Statsig Under the Hood: A Deep Dive into Internal Architecture and Implementation
Statsig is a unified experimentation platform that combines feature flags, A/B testing, and product analytics into a single, cohesive system. This post explores the internal architecture, SDK integration patterns, and implementation strategies for both browser and server-side environments.
TLDR
• Unified Platform: Statsig integrates feature flags, experimentation, and analytics through a single data pipeline, eliminating data silos and ensuring statistical integrity
• Dual SDK Architecture: Server SDKs download full config specs and evaluate locally (sub-1ms), while client SDKs receive pre-evaluated results during initialization
• Deterministic Assignment: SHA-256 hashing with unique salts ensures consistent user bucketing across platforms and sessions
• High-Performance Design: Global CDN distribution for configs, multi-stage event pipeline for durability, and hybrid data processing (Spark + BigQuery)
• Flexible Deployment: Supports cloud-hosted, warehouse-native, and hybrid models for different compliance and data sovereignty requirements
• Advanced Caching: Sophisticated caching strategies including bootstrap initialization, local storage, and edge integration patterns
• Override System: Multi-layered override capabilities for development, testing, and debugging workflows
Table of Contents
- Core Architecture Principles
- Unified Platform Philosophy
- SDK Architecture Deep Dive
- Configuration Synchronization
- Deterministic Assignment Algorithm
- Browser SDK Implementation
- Node.js Server SDK Integration
- Performance Optimization Strategies
- Override System Architecture
- Advanced Integration Patterns
- Practical Implementation Examples
- Conclusion
- Error Handling and Resilience
- Monitoring and Observability
- Security Considerations
- Performance Benchmarks
- Best Practices and Recommendations
- Future Considerations
- Conclusion
Core Architecture Principles
Statsig’s architecture is built on several fundamental principles that enable its high-performance, scalable feature flagging and experimentation platform:
• Deterministic Evaluation: Every evaluation produces consistent results across different platforms and SDK implementations. Given the same user object and experiment state, Statsig always returns identical results whether evaluated on client or server SDKs.
• Stateless SDK Model: SDKs don’t maintain user assignment state or remember previous evaluations. Instead, they rely on deterministic algorithms to compute assignments in real-time, eliminating the need for distributed state management.
• Local Evaluation: After initialization, virtually all SDK operations execute without network requests, typically completing in under 1ms. Server SDKs maintain complete rulesets in memory, while client SDKs receive pre-computed evaluations during initialization.
• Unified Data Pipeline: Feature flags, experimentation, and analytics share a single data pipeline, ensuring data consistency and eliminating silos.
• High-Performance Design: Optimized for sub-millisecond evaluation latencies with global CDN distribution and sophisticated caching strategies.
graph TB A[User Request] --> B{SDK Type?} B -->|Server SDK| C[Local Evaluation] B -->|Client SDK| D[Pre-evaluated Cache] C --> E[In-Memory Ruleset] E --> F[Deterministic Hash] F --> G[Result] D --> H[Local Storage Cache] H --> I[Network Request] I --> J[Statsig Backend] J --> K[Pre-computed Values] K --> L[Cache Update] L --> G G --> M[Feature Flag Result] style A fill:#e1f5fe style M fill:#c8e6c9 style C fill:#fff3e0 style D fill:#f3e5f5
Unified Platform Philosophy
Statsig’s most fundamental design tenet is its “unified system” approach where feature flags, experimentation, product analytics, and session replay all share a single, common data pipeline. This directly addresses the prevalent industry problem of “tool sprawl” where organizations employ disparate services for different functions.
graph LR A[Feature Flags] --> E[Unified Data Pipeline] B[Experimentation] --> E C[Product Analytics] --> E D[Session Replay] --> E E --> F[Assignment Service] E --> G[Configuration Service] E --> H[Metrics Pipeline] E --> I[Analysis Service] F --> J[User Assignments] G --> K[Rule Definitions] H --> L[Event Processing] I --> M[Statistical Analysis] J --> N[Consistent Results] K --> N L --> N M --> N style E fill:#e3f2fd style N fill:#c8e6c9 style A fill:#fff3e0 style B fill:#f3e5f5 style C fill:#e8f5e8 style D fill:#fce4ec
Data Consistency Guarantees
When a feature flag exposure and a subsequent conversion event are processed through the same pipeline, using the same user identity model and metric definitions, the causal link between them becomes inherently trustworthy. This architectural choice fundamentally increases the statistical integrity and reliability of experiment results.
Core Service Components
The platform is composed of distinct, decoupled microservices:
- Assignment Service: Determines user assignments to experiment variations and feature rollouts
- Feature Flag/Configuration Service: Manages rule definitions and config specs
- Metrics Pipeline: High-throughput system for event ingestion, processing, and analysis
- Analysis Service: Statistical engine computing experiment results using methods like CUPED and sequential testing
SDK Architecture Deep Dive
Server vs. Client SDK Dichotomy
Statsig employs two fundamentally different models for configuration synchronization and evaluation:
Server SDK Architecture
graph TB A1[Initialize] --> A2[Download Full Config Spec] A2 --> A3[Store in Memory] A3 --> A4[Local Evaluation] A4 --> A5[Sub-1ms Response] A1 -.->|Secret Key| A2 style A1 fill:#fff3e0 style A5 fill:#c8e6c9
Client SDK Architecture
graph TB B1[Initialize] --> B2[Send User to /initialize] B2 --> B3[Backend Evaluation] B3 --> B4[Pre-computed Values] B4 --> B5[Cache Results] B5 --> B6[Fast Cache Lookup] B1 -.->|Client Key| B2 style B1 fill:#f3e5f5 style B6 fill:#c8e6c9
Server SDKs (Node.js, Python, Go, Java)
// Download & Evaluate Locally Modelimport { Statsig } from "@statsig/statsig-node-core"
// Initialize with full config downloadconst statsig = await Statsig.initialize("secret-key", { environment: { tier: "production" }, rulesetsSyncIntervalMs: 10000,})
// Synchronous, in-memory evaluationfunction evaluateUserFeatures(user: StatsigUser) { const isFeatureEnabled = statsig.checkGate(user, "new_ui_feature") const config = statsig.getConfig(user, "pricing_tier") const experiment = statsig.getExperiment(user, "recommendation_algorithm")
return { newUI: isFeatureEnabled, pricing: config.value, experiment: experiment.value, }}
// Sub-1ms evaluation, no network callsconst result = evaluateUserFeatures({ userID: "user123", email: "user@example.com", custom: { plan: "premium" },})
Characteristics:
- Downloads entire config spec during initialization
- Performs evaluation logic locally, in-memory
- Synchronous, sub-millisecond operations
- No network calls for individual checks
Client SDKs (JavaScript, React, iOS, Android)
// Pre-evaluated on Initialize Modelimport { StatsigClient } from "@statsig/js-client"
// Initialize with user contextconst client = new StatsigClient("client-key")await client.initializeAsync({ userID: "user123", email: "user@example.com", custom: { plan: "premium" },})
// Synchronous cache lookupfunction getFeatureFlags() { const isFeatureEnabled = client.checkGate("new_ui_feature") const config = client.getConfig("pricing_tier") const experiment = client.getExperiment("recommendation_algorithm")
return { newUI: isFeatureEnabled, pricing: config.value, experiment: experiment.value, }}
// Fast cache lookup, no network callsconst result = getFeatureFlags()
Characteristics:
- Sends user object to
/initialize
endpoint during startup - Receives pre-computed, tailored JSON payload
- Subsequent checks are fast, synchronous cache lookups
- No exposure of business logic to client
Configuration Synchronization
Server-Side Configuration Management
Server SDKs maintain authoritative configuration state by downloading complete rule definitions:
sequenceDiagram participant SDK as Server SDK participant CDN as Statsig CDN participant Memory as In-Memory Store SDK->>CDN: GET /download_config_specs/{KEY} CDN-->>SDK: Full Config Spec (JSON) SDK->>Memory: Parse & Store Config SDK->>SDK: Start Background Polling loop Every 10 seconds SDK->>CDN: GET /download_config_specs/{KEY}?lcut={timestamp} alt Has Updates CDN-->>SDK: Delta Updates SDK->>Memory: Atomic Swap else No Updates CDN-->>SDK: { has_updates: false } end end
interface ConfigSpecs { feature_gates: Record<string, FeatureGateSpec> dynamic_configs: Record<string, DynamicConfigSpec> layer_configs: Record<string, LayerSpec> id_lists: Record<string, string[]> has_updates: boolean time: number}
Synchronization Process:
- Initial download from CDN endpoint:
https://api.statsigcdn.com/v1/download_config_specs/{SDK_KEY}.json
- Background polling every 10 seconds (configurable)
- Delta updates when possible using
company_lcut
timestamp - Atomic swaps of in-memory store for consistency
Client-Side Evaluation Caching
Client SDKs receive pre-evaluated results rather than raw configuration rules:
sequenceDiagram participant Client as Client SDK participant Backend as Statsig Backend participant Cache as Local Storage Client->>Cache: Check for cached values alt Cache Hit Cache-->>Client: Return cached evaluations else Cache Miss Client->>Backend: POST /initialize { user } Backend->>Backend: Evaluate all rules for user Backend-->>Client: Pre-computed values (JSON) Client->>Cache: Store evaluations end Client->>Client: Fast cache lookup for subsequent checks
{ "feature_gates": { "gate_name": { "name": "gate_name", "value": true, "rule_id": "rule_123", "secondary_exposures": [...] } }, "dynamic_configs": { "config_name": { "name": "config_name", "value": {"param1": "value1"}, "rule_id": "rule_456", "group": "treatment" } }}
Deterministic Assignment Algorithm
Hashing Implementation
Statsig’s bucket assignment algorithm ensures consistent, deterministic user allocation:
flowchart TD A[User ID] --> B[Salt Generation] B --> C[Input Concatenation] C --> D[SHA-256 Hashing] D --> E[Extract First 8 Bytes] E --> F[Convert to Integer] F --> G[Modulo Operation] G --> H[Bucket Assignment] B1[Rule Salt] --> C C1[Salt + UserID] --> C G1[Mod 10,000 for Experiments] --> G G2[Mod 1,000 for Layers] --> G style A fill:#e1f5fe style H fill:#c8e6c9 style D fill:#fff3e0
// Enhanced algorithm implementationimport { createHash } from "crypto"
interface AssignmentResult { bucket: number assigned: boolean group?: string}
function assignUser(userId: string, salt: string, allocation: number = 10000): AssignmentResult { // Input concatenation const input = salt + userId
// SHA-256 hashing const hash = createHash("sha256").update(input).digest("hex")
// Extract first 8 bytes and convert to integer const first8Bytes = hash.substring(0, 8) const hashInt = parseInt(first8Bytes, 16)
// Modulo operation for bucket assignment const bucket = hashInt % allocation
// Determine if user is assigned based on allocation percentage const assigned = bucket < allocation * 0.1 // 10% allocation example
return { bucket, assigned, group: assigned ? "treatment" : "control", }}
// Usage exampleconst result = assignUser("user123", "experiment_salt_abc123", 10000)console.log(`User assigned to bucket ${result.bucket}, group: ${result.group}`)
Process:
- Salt Creation: Each rule generates a unique, stable salt
- Input Concatenation: Salt + user identifier (userID, stableID, or customID)
- Hashing: SHA-256 hashing for cryptographic security and uniform distribution
- Bucket Assignment: First 8 bytes converted to integer, then modulo 10,000 (experiments) or 1,000 (layers)
Assignment Consistency Guarantees
- Cross-platform consistency: Identical assignments across client/server SDKs
- Temporal consistency: Maintains assignments across rule modifications
- User attribute independence: Assignment depends only on user identifier and salt
Browser SDK Implementation
Multi-Strategy Initialization Framework
The browser SDK implements four distinct initialization strategies:
graph TB A[Browser SDK Initialization] --> B{Strategy?} B -->|Async Awaited| C[Block Rendering] C --> D[Network Request] D --> E[Fresh Values] B -->|Bootstrap| F[Server Pre-compute] F --> G[Embed in HTML] G --> H[Instant Render] B -->|Synchronous| I[Use Cache] I --> J[Background Update] J --> K[Next Session] B -->|On-Device| L[Download Config Spec] L --> M[Local Evaluation] M --> N[Real-time Checks] style A fill:#e1f5fe style E fill:#c8e6c9 style H fill:#c8e6c9 style K fill:#fff3e0 style N fill:#f3e5f5
1. Asynchronous Awaited Initialization
const client = new StatsigClient("client-key")await client.initializeAsync(user) // Blocks rendering until complete
Use Case: When data freshness is critical and some rendering delay is acceptable.
2. Bootstrap Initialization (Recommended)
// Server-side (Node.js/Next.js)const serverStatsig = await Statsig.initialize("secret-key")const bootstrapValues = serverStatsig.getClientInitializeResponse(user)
// Client-sideconst client = new StatsigClient("client-key")client.initializeSync({ initializeValues: bootstrapValues })
Use Case: Optimal balance between performance and freshness, eliminates UI flicker.
3. Synchronous Initialization
const client = new StatsigClient("client-key")client.initializeSync(user) // Uses cache, fetches updates in background
Use Case: Progressive web applications where some staleness is acceptable.
Cache Management and Storage
The browser SDK employs sophisticated caching mechanisms:
interface CachedEvaluations { feature_gates: Record<string, FeatureGateResult> dynamic_configs: Record<string, DynamicConfigResult> layer_configs: Record<string, LayerResult> time: number company_lcut: number hash_used: string evaluated_keys: EvaluatedKeys}
Cache Invalidation: Occurs when company_lcut
timestamp changes, indicating configuration updates.
Node.js Server SDK Integration
Server-Side Architecture Patterns
graph TB subgraph "Node.js Application" A[HTTP Request] --> B[Express/Next.js Handler] B --> C[Statsig SDK] C --> D[In-Memory Ruleset] D --> E[Local Evaluation] E --> F[Response] end subgraph "Background Sync" G[Background Timer] --> H[Poll CDN] H --> I[Download Updates] I --> J[Atomic Swap] J --> D end subgraph "Data Store (Optional)" K[Redis/Memory] --> L[Config Cache] L --> D end style A fill:#e1f5fe style F fill:#c8e6c9 style E fill:#fff3e0 style J fill:#f3e5f5
import { Statsig } from "@statsig/statsig-node-core"
// Initializationconst statsig = await Statsig.initialize("secret-key", { environment: { tier: "production" }, rulesetsSyncIntervalMs: 10000, // 10 seconds})
// Synchronous evaluationfunction handleRequest(req: Request, res: Response) { const user = { userID: req.user.id, email: req.user.email, custom: { plan: req.user.plan }, }
const isFeatureEnabled = statsig.checkGate(user, "new_feature") const config = statsig.getConfig(user, "pricing_config")
// Sub-1ms evaluation, no network calls res.json({ feature: isFeatureEnabled, pricing: config.value })}
Background Synchronization
Server SDKs implement continuous background synchronization:
// Configurable polling intervalconst statsig = await Statsig.initialize("secret-key", { rulesetsSyncIntervalMs: 30000, // 30 seconds for less critical updates})
// Delta updates when possible// Atomic swaps ensure consistency
Data Adapter Ecosystem
For enhanced resilience, Statsig supports pluggable data adapters:
// Redis Data Adapterimport { RedisDataAdapter } from "@statsig/redis-data-adapter"
const redisAdapter = new RedisDataAdapter({ host: "localhost", port: 6379, password: "password",})
const statsig = await Statsig.initialize("secret-key", { dataStore: redisAdapter,})
Performance Optimization Strategies
Bootstrap Initialization for Next.js
sequenceDiagram participant User as User participant Next as Next.js Server participant Statsig as Statsig Server SDK participant Client as Client SDK participant Browser as Browser User->>Next: GET /page Next->>Statsig: getClientInitializeResponse(user) Statsig->>Statsig: Local evaluation Statsig-->>Next: Bootstrap values Next->>Browser: HTML + bootstrap values Browser->>Client: initializeSync(bootstrap) Client->>Client: Instant cache population Client->>Browser: Feature flags ready Note over Browser: No network request needed Note over Client: UI renders immediately
import { Statsig } from "@statsig/statsig-node-core"
const statsig = await Statsig.initialize("secret-key")
export default async function handler(req: NextApiRequest, res: NextApiResponse) { const user = { userID: req.headers["x-user-id"] as string, email: req.headers["x-user-email"] as string, }
const bootstrapValues = statsig.getClientInitializeResponse(user) res.json(bootstrapValues)}
import { StatsigClient } from '@statsig/js-client';
function MyApp({ Component, pageProps, bootstrapValues }) { const [statsig, setStatsig] = useState(null);
useEffect(() => { const client = new StatsigClient('client-key'); client.initializeSync({ initializeValues: bootstrapValues }); setStatsig(client); }, []);
return <Component {...pageProps} statsig={statsig} />;}
Edge Integration Patterns
// Vercel Edge Config Integrationimport { VercelDataAdapter } from "@statsig/vercel-data-adapter"
const vercelAdapter = new VercelDataAdapter({ edgeConfig: process.env.EDGE_CONFIG,})
const statsig = await Statsig.initialize("secret-key", { dataStore: vercelAdapter,})
Override System Architecture
Feature Gate Overrides
flowchart TD A[Feature Gate Check] --> B{Override Exists?} B -->|Yes| C[Return Override Value] B -->|No| D[Evaluate Rules] D --> E[Return Rule Result] C --> F[Final Result] E --> F subgraph "Override Types" G[Console Override] --> H[User ID List] I[Local Override] --> J[Programmatic] K[Global Override] --> L[All Users] end style A fill:#e1f5fe style F fill:#c8e6c9 style C fill:#fff3e0 style E fill:#f3e5f5
// Console-based overrides (highest precedence)// Configured in Statsig console for specific userIDs
// Local SDK overrides (for testing)statsig.overrideGate("my_gate", true, "user123")statsig.overrideGate("my_gate", false) // Global override
Experiment Overrides
// Layer-level overrides for experimentsstatsig.overrideExperiment("my_experiment", "treatment", "user123")
// Local mode for testingconst statsig = await Statsig.initialize("secret-key", { localMode: true, // Disables network requests})
Advanced Integration Patterns
Microservices Integration
graph TB subgraph "Microservice A" A1[Service A] --> A2[Statsig SDK A] A2 --> A3[Redis Cache] end subgraph "Microservice B" B1[Service B] --> B2[Statsig SDK B] B2 --> A3 end subgraph "Microservice C" C1[Service C] --> C2[Statsig SDK C] C2 --> A3 end A3 --> D[Shared Configuration State] subgraph "Load Balancer" E[User Request] --> F[Route to Service] F --> A1 F --> B1 F --> C1 end style A3 fill:#e1f5fe style D fill:#c8e6c9 style E fill:#fff3e0
// Shared configuration state across servicesconst redisAdapter = new RedisDataAdapter({ host: process.env.REDIS_HOST, port: parseInt(process.env.REDIS_PORT), password: process.env.REDIS_PASSWORD,})
// All services use the same Redis instance for config sharingconst statsig = await Statsig.initialize("secret-key", { dataStore: redisAdapter,})
Serverless Architecture Considerations
graph TB subgraph "AWS Lambda" A[Lambda Function] --> B{Statsig Initialized?} B -->|No| C[Initialize SDK] B -->|Yes| D[Use Existing Instance] C --> E[Load from Redis] D --> F[Local Evaluation] E --> F F --> G[Return Result] end subgraph "Redis Cache" H[Config Cache] --> I[Shared State] end E --> H D --> H style A fill:#e1f5fe style G fill:#c8e6c9 style H fill:#fff3e0
// Cold start optimization for serverless environmentslet statsigInstance: Statsig | null = null
export async function handler(event: APIGatewayEvent) { // Initialize SDK only once per container if (!statsigInstance) { statsigInstance = await Statsig.initialize("secret-key", { dataStore: new RedisDataAdapter({ host: process.env.REDIS_HOST, port: parseInt(process.env.REDIS_PORT), password: process.env.REDIS_PASSWORD, }), }) }
const user = { userID: event.requestContext.authorizer.userId } const result = statsigInstance.checkGate(user, "feature_flag")
return { statusCode: 200, body: JSON.stringify({ feature: result }), }}
Practical Implementation Examples
Next.js with Bootstrap Initialization
sequenceDiagram participant User as User participant Next as Next.js participant Statsig as Statsig Server participant Client as Client SDK participant React as React App User->>Next: GET /page Next->>Next: getServerSideProps() Next->>Statsig: getBootstrapValues(user) Statsig->>Statsig: Local evaluation Statsig-->>Next: Bootstrap values Next->>User: HTML + bootstrap values User->>Client: initializeSync(bootstrap) Client->>React: Feature flags ready React->>React: Conditional rendering Note over React: No UI flicker Note over Client: Instant initialization
import { Statsig } from "@statsig/statsig-node-core"
let statsigInstance: Statsig | null = null
export async function getStatsig() { if (!statsigInstance) { statsigInstance = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!) } return statsigInstance}
export async function getBootstrapValues(user: StatsigUser) { const statsig = await getStatsig() return statsig.getClientInitializeResponse(user)}
import { GetServerSideProps } from 'next';import { StatsigClient } from '@statsig/js-client';import { getBootstrapValues } from '../lib/statsig';
export const getServerSideProps: GetServerSideProps = async (context) => { const user = { userID: context.req.headers['x-user-id'] as string || 'anonymous', custom: { source: 'web' } };
const bootstrapValues = await getBootstrapValues(user);
return { props: { bootstrapValues, user } };};
export default function Home({ bootstrapValues, user }) { const [statsig, setStatsig] = useState<StatsigClient | null>(null);
useEffect(() => { const client = new StatsigClient(process.env.NEXT_PUBLIC_STATSIG_CLIENT_KEY!); client.initializeSync({ initializeValues: bootstrapValues }); setStatsig(client); }, [bootstrapValues]);
const isFeatureEnabled = statsig?.checkGate('new_feature') || false;
return ( <div> {isFeatureEnabled && <NewFeatureComponent />} <ExistingComponent /> </div> );}
Node.js BFF (Backend for Frontend) Pattern
import { Statsig } from "@statsig/statsig-node-core"
export class FeatureService { private statsig: Statsig
constructor() { this.initialize() }
private async initialize() { this.statsig = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!) }
async evaluateFeatures(user: StatsigUser) { const features = { newUI: this.statsig.checkGate(user, "new_ui"), pricing: this.statsig.getConfig(user, "pricing_tier"), experiment: this.statsig.getExperiment(user, "recommendation_algorithm"), }
return features }
async getBootstrapValues(user: StatsigUser) { return this.statsig.getClientInitializeResponse(user) }}
import { FeatureService } from "../services/feature-service"
const featureService = new FeatureService()
router.get("/features/:userId", async (req, res) => { const user = { userID: req.params.userId, email: req.headers["x-user-email"] as string, custom: { plan: req.headers["x-user-plan"] as string }, }
const features = await featureService.evaluateFeatures(user) res.json(features)})
router.get("/bootstrap/:userId", async (req, res) => { const user = { userID: req.params.userId } const bootstrapValues = await featureService.getBootstrapValues(user) res.json(bootstrapValues)})
Conclusion
Statsig’s internal architecture demonstrates a sophisticated understanding of modern distributed systems challenges. Its unified platform approach, deterministic evaluation algorithms, and flexible SDK architecture make it well-suited for high-scale, data-driven product development.
The key architectural decisions—separating client and server evaluation models, implementing robust caching strategies, and providing comprehensive override systems—reflect a mature approach to building experimentation platforms that can scale from startup to enterprise.
For engineering teams implementing Statsig, the choice between bootstrap initialization and asynchronous patterns, the decision to use data adapters for resilience, and the configuration of override systems should be driven by specific performance, security, and operational requirements.
The platform’s commitment to transparency in its assignment algorithms and the availability of warehouse-native deployment options further positions it as a solution that can grow with an organization’s data maturity and compliance requirements.
Error Handling and Resilience
Network Failure Scenarios
Statsig SDKs are designed to handle various network failure scenarios gracefully:
flowchart TD A[SDK Request] --> B{Network Available?} B -->|Yes| C[Fresh Data] B -->|No| D{Has Cache?} D -->|Yes| E[Use Cached Values] D -->|No| F[Use Defaults] C --> G[Success Response] E --> G F --> G subgraph "Fallback Hierarchy" H[Fresh Data] --> I[Cached Values] I --> J[Default Values] J --> K[Graceful Degradation] end style A fill:#e1f5fe style G fill:#c8e6c9 style E fill:#fff3e0 style F fill:#f3e5f5
// Client SDK error handling with enhanced fallbacksconst client = new StatsigClient("client-key")
try { await client.initializeAsync(user)} catch (error) { // SDK automatically falls back to cached values or defaults console.warn("Statsig initialization failed, using cached values:", error)
// Custom fallback logic if (error.code === "NETWORK_ERROR") { // Use cached values client.initializeSync(user) } else if (error.code === "AUTH_ERROR") { // Use defaults console.error("Authentication failed, using default values") }}
// Server SDK error handling with data store fallbackconst statsig = await Statsig.initialize("secret-key", { dataStore: new RedisDataAdapter({ host: process.env.REDIS_HOST, port: parseInt(process.env.REDIS_PORT), password: process.env.REDIS_PASSWORD, }), rulesetsSyncIntervalMs: 10000, // SDK will retry failed downloads with exponential backoff retryAttempts: 3, retryDelayMs: 1000,})
Fallback Mechanisms
Client SDK Fallbacks:
- Cached Values: Uses previously cached evaluations from localStorage
- Default Values: Falls back to code-defined defaults
- Graceful Degradation: Continues operation with stale data
Server SDK Fallbacks:
- Data Store: Loads configurations from Redis/other data stores
- In-Memory Cache: Uses last successfully downloaded config
- Health Checks: Monitors SDK health and reports issues
Monitoring and Observability
SDK Health Monitoring
graph TB subgraph "Application" A[Statsig SDK] --> B[Health Check] B --> C[Performance Metrics] C --> D[Error Tracking] end subgraph "Monitoring System" E[Metrics Collector] --> F[Alerting] E --> G[Dashboard] E --> H[Logs] end B --> E C --> E D --> E subgraph "Key Metrics" I[Evaluation Latency] J[Cache Hit Rate] K[Sync Success Rate] L[Error Rates] end C --> I C --> J C --> K D --> L style A fill:#e1f5fe style E fill:#c8e6c9 style I fill:#fff3e0 style L fill:#f3e5f5
// Server SDK monitoring with enhanced health checksconst statsig = await Statsig.initialize("secret-key", { environment: { tier: "production" }, // Enable detailed logging logLevel: "info",})
// Monitor SDK health with custom alertingsetInterval(() => { const health = statsig.getHealth() if (health.status !== "healthy") { // Alert or log health issues console.error("Statsig SDK health issue:", health)
// Send to monitoring system metrics.increment("statsig.health.issues", { status: health.status, error: health.error, }) }}, 60000)
// Custom metrics collectionconst startTime = performance.now()const result = statsig.checkGate(user, "feature_flag")const latency = performance.now() - startTime
// Send to your monitoring systemmetrics.histogram("statsig.evaluation.latency", latency)metrics.increment("statsig.evaluation.count")
Performance Metrics
Key Metrics to Monitor:
- Evaluation Latency: Should be <1ms for server SDKs
- Cache Hit Rate: Percentage of evaluations using cached configs
- Sync Success Rate: Percentage of successful config downloads
- Error Rates: Network failures, parsing errors, evaluation errors
Security Considerations
API Key Management
graph TB subgraph "Environment Management" A[Development] --> B[Dev Key] C[Staging] --> D[Staging Key] E[Production] --> F[Production Key] end subgraph "Key Rotation" G[Current Key] --> H[Backup Key] H --> I[New Key] I --> G end subgraph "Security Layers" J[HTTPS/TLS] --> K[API Key Auth] K --> L[Environment Isolation] L --> M[Data Encryption] end B --> J D --> J F --> J style A fill:#e1f5fe style F fill:#c8e6c9 style J fill:#fff3e0 style M fill:#f3e5f5
// Environment-specific keysconst statsigKey = process.env.NODE_ENV === "production" ? process.env.STATSIG_SECRET_KEY : process.env.STATSIG_DEV_KEY
// Key rotation strategyconst statsig = await Statsig.initialize(statsigKey, { // Support for multiple keys during rotation backupKeys: [process.env.STATSIG_BACKUP_KEY],})
Data Privacy
User Data Handling:
- PII Protection: Never log sensitive user data
- Data Minimization: Only send necessary user attributes
- Encryption: All data transmitted over HTTPS/TLS
// Sanitize user data before sending to Statsigconst sanitizedUser = { userID: user.id, email: user.email ? hashEmail(user.email) : undefined, custom: { plan: user.plan, region: user.region, // Exclude sensitive fields like SSN, credit card info },}
Performance Benchmarks
Evaluation Performance
Server SDK Benchmarks:
- Cold Start: ~50-100ms (first evaluation after initialization)
- Warm Evaluation: <1ms (subsequent evaluations)
- Memory Usage: ~10-50MB (depending on config size)
- Throughput: 10,000+ evaluations/second per instance
Client SDK Benchmarks:
- Bootstrap Initialization: <5ms (with pre-computed values)
- Async Initialization: 100-500ms (network dependent)
- Cache Lookup: <0.1ms
- Bundle Size: ~50-100KB (gzipped)
Scalability Considerations
// Horizontal scaling with shared stateconst redisAdapter = new RedisDataAdapter({ host: process.env.REDIS_HOST, port: parseInt(process.env.REDIS_PORT), password: process.env.REDIS_PASSWORD, // Enable clustering for high availability enableOfflineMode: true,})
// Load balancing considerationsconst statsig = await Statsig.initialize("secret-key", { dataStore: redisAdapter, // Ensure consistent evaluation across instances rulesetsSyncIntervalMs: 5000,})
Best Practices and Recommendations
1. Initialization Strategy Selection
Choose Bootstrap Initialization When:
- UI flicker is unacceptable
- Server-side rendering is available
- Performance is critical
Choose Async Initialization When:
- Real-time updates are required
- Server-side rendering isn’t available
- Some rendering delay is acceptable
2. Configuration Management
// Centralized configuration managementclass StatsigConfig { private static instance: StatsigConfig private statsig: Statsig | null = null
static async getInstance(): Promise<StatsigConfig> { if (!StatsigConfig.instance) { StatsigConfig.instance = new StatsigConfig() await StatsigConfig.instance.initialize() } return StatsigConfig.instance }
private async initialize() { this.statsig = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!, { environment: { tier: process.env.NODE_ENV }, dataStore: new RedisDataAdapter({ /* config */ }), }) }
getStatsig(): Statsig { if (!this.statsig) { throw new Error("Statsig not initialized") } return this.statsig }}
3. Testing Strategies
// Unit testing with local modedescribe("Feature Flag Tests", () => { let statsig: Statsig
beforeEach(async () => { statsig = await Statsig.initialize("secret-key", { localMode: true, // Disable network requests }) })
test("should enable feature for specific user", () => { statsig.overrideGate("new_feature", true, "test-user")
const user = { userID: "test-user" } const result = statsig.checkGate(user, "new_feature")
expect(result).toBe(true) })})
4. Production Deployment
Pre-deployment Checklist:
- Configure appropriate data stores (Redis, etc.)
- Set up monitoring and alerting
- Implement proper error handling
- Test override systems
- Validate configuration synchronization
- Performance testing under load
Rollout Strategy:
- Development: Use local mode and overrides
- Staging: Connect to staging Statsig project
- Production: Gradual rollout with monitoring
- Monitoring: Watch error rates and performance metrics
Future Considerations
Upcoming Features
Statsig continues to evolve with new capabilities:
- Real-time Streaming: WebSocket-based config updates
- Advanced Analytics: Machine learning-powered insights
- Multi-environment Support: Enhanced environment management
- Custom Assignment Algorithms: Support for custom bucketing logic
Migration Strategies
From Other Platforms:
- LaunchDarkly: Gradual migration with dual evaluation
- Optimizely: Feature-by-feature migration
- Custom Solutions: Incremental adoption approach
// Migration helper for dual evaluationclass MigrationHelper { constructor( private statsig: Statsig, private legacySystem: LegacyFeatureFlags, ) {}
async evaluateFeature(user: StatsigUser, featureName: string) { const statsigResult = this.statsig.checkGate(user, featureName) const legacyResult = this.legacySystem.checkFeature(user.id, featureName)
// Log discrepancies for analysis if (statsigResult !== legacyResult) { console.warn(`Feature ${featureName} mismatch for user ${user.userID}`) }
return statsigResult // Use Statsig as source of truth }}
Conclusion
Statsig’s internal architecture represents a mature, well-thought-out approach to building experimentation platforms at scale. Its unified data pipeline, deterministic evaluation algorithms, and flexible SDK architecture make it an excellent choice for organizations looking to implement robust feature flagging and A/B testing capabilities.
The platform’s commitment to performance, transparency, and developer experience is evident in every architectural decision. From the sophisticated caching strategies to the comprehensive override systems, Statsig provides the tools necessary for building reliable, high-performance applications.
For engineering teams, the key is to understand the trade-offs between different initialization strategies, choose appropriate data stores for resilience, and implement proper monitoring and error handling. With these considerations in mind, Statsig can serve as a solid foundation for data-driven product development at any scale.
The platform’s continued evolution and commitment to enterprise-grade features position it well for organizations looking to grow their experimentation capabilities alongside their business needs.