21 min read
Part of Series: Advanced Development Topics
  1. Statsig Under the Hood: A Deep Dive into Internal Architecture and Implementation
  2. Modern Video Playback Stack

Statsig Under the Hood: A Deep Dive into Internal Architecture and Implementation

Statsig is a unified experimentation platform that combines feature flags, A/B testing, and product analytics into a single, cohesive system. This post explores the internal architecture, SDK integration patterns, and implementation strategies for both browser and server-side environments.

Unified Platform: Statsig integrates feature flags, experimentation, and analytics through a single data pipeline, eliminating data silos and ensuring statistical integrity

Dual SDK Architecture: Server SDKs download full config specs and evaluate locally (sub-1ms), while client SDKs receive pre-evaluated results during initialization

Deterministic Assignment: SHA-256 hashing with unique salts ensures consistent user bucketing across platforms and sessions

High-Performance Design: Global CDN distribution for configs, multi-stage event pipeline for durability, and hybrid data processing (Spark + BigQuery)

Flexible Deployment: Supports cloud-hosted, warehouse-native, and hybrid models for different compliance and data sovereignty requirements

Advanced Caching: Sophisticated caching strategies including bootstrap initialization, local storage, and edge integration patterns

Override System: Multi-layered override capabilities for development, testing, and debugging workflows

Statsig’s architecture is built on several fundamental principles that enable its high-performance, scalable feature flagging and experimentation platform:

Deterministic Evaluation: Every evaluation produces consistent results across different platforms and SDK implementations. Given the same user object and experiment state, Statsig always returns identical results whether evaluated on client or server SDKs.

Stateless SDK Model: SDKs don’t maintain user assignment state or remember previous evaluations. Instead, they rely on deterministic algorithms to compute assignments in real-time, eliminating the need for distributed state management.

Local Evaluation: After initialization, virtually all SDK operations execute without network requests, typically completing in under 1ms. Server SDKs maintain complete rulesets in memory, while client SDKs receive pre-computed evaluations during initialization.

Unified Data Pipeline: Feature flags, experimentation, and analytics share a single data pipeline, ensuring data consistency and eliminating silos.

High-Performance Design: Optimized for sub-millisecond evaluation latencies with global CDN distribution and sophisticated caching strategies.

graph TB
    A[User Request] --> B{SDK Type?}
    B -->|Server SDK| C[Local Evaluation]
    B -->|Client SDK| D[Pre-evaluated Cache]

    C --> E[In-Memory Ruleset]
    E --> F[Deterministic Hash]
    F --> G[Result]

    D --> H[Local Storage Cache]
    H --> I[Network Request]
    I --> J[Statsig Backend]
    J --> K[Pre-computed Values]
    K --> L[Cache Update]
    L --> G

    G --> M[Feature Flag Result]

    style A fill:#e1f5fe
    style M fill:#c8e6c9
    style C fill:#fff3e0
    style D fill:#f3e5f5
Figure 1: Statsig SDK Evaluation Flow - Server SDKs perform local evaluation while client SDKs use pre-computed cache

Statsig’s most fundamental design tenet is its “unified system” approach where feature flags, experimentation, product analytics, and session replay all share a single, common data pipeline. This directly addresses the prevalent industry problem of “tool sprawl” where organizations employ disparate services for different functions.

graph LR
    A[Feature Flags] --> E[Unified Data Pipeline]
    B[Experimentation] --> E
    C[Product Analytics] --> E
    D[Session Replay] --> E

    E --> F[Assignment Service]
    E --> G[Configuration Service]
    E --> H[Metrics Pipeline]
    E --> I[Analysis Service]

    F --> J[User Assignments]
    G --> K[Rule Definitions]
    H --> L[Event Processing]
    I --> M[Statistical Analysis]

    J --> N[Consistent Results]
    K --> N
    L --> N
    M --> N

    style E fill:#e3f2fd
    style N fill:#c8e6c9
    style A fill:#fff3e0
    style B fill:#f3e5f5
    style C fill:#e8f5e8
    style D fill:#fce4ec
Figure 2: Unified Platform Architecture - All components share a single data pipeline ensuring consistency

When a feature flag exposure and a subsequent conversion event are processed through the same pipeline, using the same user identity model and metric definitions, the causal link between them becomes inherently trustworthy. This architectural choice fundamentally increases the statistical integrity and reliability of experiment results.

The platform is composed of distinct, decoupled microservices:

  • Assignment Service: Determines user assignments to experiment variations and feature rollouts
  • Feature Flag/Configuration Service: Manages rule definitions and config specs
  • Metrics Pipeline: High-throughput system for event ingestion, processing, and analysis
  • Analysis Service: Statistical engine computing experiment results using methods like CUPED and sequential testing

Statsig employs two fundamentally different models for configuration synchronization and evaluation:

graph TB
    A1[Initialize] --> A2[Download Full Config Spec]
    A2 --> A3[Store in Memory]
    A3 --> A4[Local Evaluation]
    A4 --> A5[Sub-1ms Response]

    A1 -.->|Secret Key| A2

    style A1 fill:#fff3e0
    style A5 fill:#c8e6c9
Figure 3a: Server SDK Architecture - Downloads full config and evaluates locally
graph TB
    B1[Initialize] --> B2[Send User to /initialize]
    B2 --> B3[Backend Evaluation]
    B3 --> B4[Pre-computed Values]
    B4 --> B5[Cache Results]
    B5 --> B6[Fast Cache Lookup]

    B1 -.->|Client Key| B2

    style B1 fill:#f3e5f5
    style B6 fill:#c8e6c9
Figure 3b: Client SDK Architecture - Receives pre-computed values and caches them
// Download & Evaluate Locally Model
import { Statsig } from "@statsig/statsig-node-core"
// Initialize with full config download
const statsig = await Statsig.initialize("secret-key", {
environment: { tier: "production" },
rulesetsSyncIntervalMs: 10000,
})
// Synchronous, in-memory evaluation
function evaluateUserFeatures(user: StatsigUser) {
const isFeatureEnabled = statsig.checkGate(user, "new_ui_feature")
const config = statsig.getConfig(user, "pricing_tier")
const experiment = statsig.getExperiment(user, "recommendation_algorithm")
return {
newUI: isFeatureEnabled,
pricing: config.value,
experiment: experiment.value,
}
}
// Sub-1ms evaluation, no network calls
const result = evaluateUserFeatures({
userID: "user123",
email: "user@example.com",
custom: { plan: "premium" },
})

Characteristics:

  • Downloads entire config spec during initialization
  • Performs evaluation logic locally, in-memory
  • Synchronous, sub-millisecond operations
  • No network calls for individual checks
// Pre-evaluated on Initialize Model
import { StatsigClient } from "@statsig/js-client"
// Initialize with user context
const client = new StatsigClient("client-key")
await client.initializeAsync({
userID: "user123",
email: "user@example.com",
custom: { plan: "premium" },
})
// Synchronous cache lookup
function getFeatureFlags() {
const isFeatureEnabled = client.checkGate("new_ui_feature")
const config = client.getConfig("pricing_tier")
const experiment = client.getExperiment("recommendation_algorithm")
return {
newUI: isFeatureEnabled,
pricing: config.value,
experiment: experiment.value,
}
}
// Fast cache lookup, no network calls
const result = getFeatureFlags()

Characteristics:

  • Sends user object to /initialize endpoint during startup
  • Receives pre-computed, tailored JSON payload
  • Subsequent checks are fast, synchronous cache lookups
  • No exposure of business logic to client

Server SDKs maintain authoritative configuration state by downloading complete rule definitions:

sequenceDiagram
    participant SDK as Server SDK
    participant CDN as Statsig CDN
    participant Memory as In-Memory Store

    SDK->>CDN: GET /download_config_specs/{KEY}
    CDN-->>SDK: Full Config Spec (JSON)
    SDK->>Memory: Parse & Store Config
    SDK->>SDK: Start Background Polling

    loop Every 10 seconds
        SDK->>CDN: GET /download_config_specs/{KEY}?lcut={timestamp}
        alt Has Updates
            CDN-->>SDK: Delta Updates
            SDK->>Memory: Atomic Swap
        else No Updates
            CDN-->>SDK: { has_updates: false }
        end
    end
Figure 4: Server-Side Configuration Synchronization - Continuous polling with delta updates
interface ConfigSpecs {
feature_gates: Record<string, FeatureGateSpec>
dynamic_configs: Record<string, DynamicConfigSpec>
layer_configs: Record<string, LayerSpec>
id_lists: Record<string, string[]>
has_updates: boolean
time: number
}

Synchronization Process:

  1. Initial download from CDN endpoint: https://api.statsigcdn.com/v1/download_config_specs/{SDK_KEY}.json
  2. Background polling every 10 seconds (configurable)
  3. Delta updates when possible using company_lcut timestamp
  4. Atomic swaps of in-memory store for consistency

Client SDKs receive pre-evaluated results rather than raw configuration rules:

sequenceDiagram
    participant Client as Client SDK
    participant Backend as Statsig Backend
    participant Cache as Local Storage

    Client->>Cache: Check for cached values
    alt Cache Hit
        Cache-->>Client: Return cached evaluations
    else Cache Miss
        Client->>Backend: POST /initialize { user }
        Backend->>Backend: Evaluate all rules for user
        Backend-->>Client: Pre-computed values (JSON)
        Client->>Cache: Store evaluations
    end

    Client->>Client: Fast cache lookup for subsequent checks
Figure 5: Client-Side Evaluation Caching - Pre-computed values with local storage fallback
{
"feature_gates": {
"gate_name": {
"name": "gate_name",
"value": true,
"rule_id": "rule_123",
"secondary_exposures": [...]
}
},
"dynamic_configs": {
"config_name": {
"name": "config_name",
"value": {"param1": "value1"},
"rule_id": "rule_456",
"group": "treatment"
}
}
}

Statsig’s bucket assignment algorithm ensures consistent, deterministic user allocation:

flowchart TD
    A[User ID] --> B[Salt Generation]
    B --> C[Input Concatenation]
    C --> D[SHA-256 Hashing]
    D --> E[Extract First 8 Bytes]
    E --> F[Convert to Integer]
    F --> G[Modulo Operation]
    G --> H[Bucket Assignment]

    B1[Rule Salt] --> C
    C1[Salt + UserID] --> C

    G1[Mod 10,000 for Experiments] --> G
    G2[Mod 1,000 for Layers] --> G

    style A fill:#e1f5fe
    style H fill:#c8e6c9
    style D fill:#fff3e0
Figure 6: Deterministic Assignment Algorithm - SHA-256 hashing with salt ensures consistent user bucketing
// Enhanced algorithm implementation
import { createHash } from "crypto"
interface AssignmentResult {
bucket: number
assigned: boolean
group?: string
}
function assignUser(userId: string, salt: string, allocation: number = 10000): AssignmentResult {
// Input concatenation
const input = salt + userId
// SHA-256 hashing
const hash = createHash("sha256").update(input).digest("hex")
// Extract first 8 bytes and convert to integer
const first8Bytes = hash.substring(0, 8)
const hashInt = parseInt(first8Bytes, 16)
// Modulo operation for bucket assignment
const bucket = hashInt % allocation
// Determine if user is assigned based on allocation percentage
const assigned = bucket < allocation * 0.1 // 10% allocation example
return {
bucket,
assigned,
group: assigned ? "treatment" : "control",
}
}
// Usage example
const result = assignUser("user123", "experiment_salt_abc123", 10000)
console.log(`User assigned to bucket ${result.bucket}, group: ${result.group}`)

Process:

  1. Salt Creation: Each rule generates a unique, stable salt
  2. Input Concatenation: Salt + user identifier (userID, stableID, or customID)
  3. Hashing: SHA-256 hashing for cryptographic security and uniform distribution
  4. Bucket Assignment: First 8 bytes converted to integer, then modulo 10,000 (experiments) or 1,000 (layers)
  • Cross-platform consistency: Identical assignments across client/server SDKs
  • Temporal consistency: Maintains assignments across rule modifications
  • User attribute independence: Assignment depends only on user identifier and salt

The browser SDK implements four distinct initialization strategies:

graph TB
    A[Browser SDK Initialization] --> B{Strategy?}

    B -->|Async Awaited| C[Block Rendering]
    C --> D[Network Request]
    D --> E[Fresh Values]

    B -->|Bootstrap| F[Server Pre-compute]
    F --> G[Embed in HTML]
    G --> H[Instant Render]

    B -->|Synchronous| I[Use Cache]
    I --> J[Background Update]
    J --> K[Next Session]

    B -->|On-Device| L[Download Config Spec]
    L --> M[Local Evaluation]
    M --> N[Real-time Checks]

    style A fill:#e1f5fe
    style E fill:#c8e6c9
    style H fill:#c8e6c9
    style K fill:#fff3e0
    style N fill:#f3e5f5
Figure 7: Browser SDK Initialization Strategies - Four different approaches for balancing performance and freshness
const client = new StatsigClient("client-key")
await client.initializeAsync(user) // Blocks rendering until complete

Use Case: When data freshness is critical and some rendering delay is acceptable.

// Server-side (Node.js/Next.js)
const serverStatsig = await Statsig.initialize("secret-key")
const bootstrapValues = serverStatsig.getClientInitializeResponse(user)
// Client-side
const client = new StatsigClient("client-key")
client.initializeSync({ initializeValues: bootstrapValues })

Use Case: Optimal balance between performance and freshness, eliminates UI flicker.

const client = new StatsigClient("client-key")
client.initializeSync(user) // Uses cache, fetches updates in background

Use Case: Progressive web applications where some staleness is acceptable.

The browser SDK employs sophisticated caching mechanisms:

interface CachedEvaluations {
feature_gates: Record<string, FeatureGateResult>
dynamic_configs: Record<string, DynamicConfigResult>
layer_configs: Record<string, LayerResult>
time: number
company_lcut: number
hash_used: string
evaluated_keys: EvaluatedKeys
}

Cache Invalidation: Occurs when company_lcut timestamp changes, indicating configuration updates.

graph TB
    subgraph "Node.js Application"
        A[HTTP Request] --> B[Express/Next.js Handler]
        B --> C[Statsig SDK]
        C --> D[In-Memory Ruleset]
        D --> E[Local Evaluation]
        E --> F[Response]
    end

    subgraph "Background Sync"
        G[Background Timer] --> H[Poll CDN]
        H --> I[Download Updates]
        I --> J[Atomic Swap]
        J --> D
    end

    subgraph "Data Store (Optional)"
        K[Redis/Memory] --> L[Config Cache]
        L --> D
    end

    style A fill:#e1f5fe
    style F fill:#c8e6c9
    style E fill:#fff3e0
    style J fill:#f3e5f5
Figure 8: Node.js Server SDK Architecture - In-memory evaluation with background synchronization
import { Statsig } from "@statsig/statsig-node-core"
// Initialization
const statsig = await Statsig.initialize("secret-key", {
environment: { tier: "production" },
rulesetsSyncIntervalMs: 10000, // 10 seconds
})
// Synchronous evaluation
function handleRequest(req: Request, res: Response) {
const user = {
userID: req.user.id,
email: req.user.email,
custom: { plan: req.user.plan },
}
const isFeatureEnabled = statsig.checkGate(user, "new_feature")
const config = statsig.getConfig(user, "pricing_config")
// Sub-1ms evaluation, no network calls
res.json({ feature: isFeatureEnabled, pricing: config.value })
}

Server SDKs implement continuous background synchronization:

// Configurable polling interval
const statsig = await Statsig.initialize("secret-key", {
rulesetsSyncIntervalMs: 30000, // 30 seconds for less critical updates
})
// Delta updates when possible
// Atomic swaps ensure consistency

For enhanced resilience, Statsig supports pluggable data adapters:

// Redis Data Adapter
import { RedisDataAdapter } from "@statsig/redis-data-adapter"
const redisAdapter = new RedisDataAdapter({
host: "localhost",
port: 6379,
password: "password",
})
const statsig = await Statsig.initialize("secret-key", {
dataStore: redisAdapter,
})
sequenceDiagram
    participant User as User
    participant Next as Next.js Server
    participant Statsig as Statsig Server SDK
    participant Client as Client SDK
    participant Browser as Browser

    User->>Next: GET /page
    Next->>Statsig: getClientInitializeResponse(user)
    Statsig->>Statsig: Local evaluation
    Statsig-->>Next: Bootstrap values
    Next->>Browser: HTML + bootstrap values
    Browser->>Client: initializeSync(bootstrap)
    Client->>Client: Instant cache population
    Client->>Browser: Feature flags ready

    Note over Browser: No network request needed
    Note over Client: UI renders immediately
Figure 9: Bootstrap Initialization Flow - Server pre-computes values for instant client-side rendering
pages/api/features.ts
import { Statsig } from "@statsig/statsig-node-core"
const statsig = await Statsig.initialize("secret-key")
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
const user = {
userID: req.headers["x-user-id"] as string,
email: req.headers["x-user-email"] as string,
}
const bootstrapValues = statsig.getClientInitializeResponse(user)
res.json(bootstrapValues)
}
pages/_app.tsx
import { StatsigClient } from '@statsig/js-client';
function MyApp({ Component, pageProps, bootstrapValues }) {
const [statsig, setStatsig] = useState(null);
useEffect(() => {
const client = new StatsigClient('client-key');
client.initializeSync({ initializeValues: bootstrapValues });
setStatsig(client);
}, []);
return <Component {...pageProps} statsig={statsig} />;
}
// Vercel Edge Config Integration
import { VercelDataAdapter } from "@statsig/vercel-data-adapter"
const vercelAdapter = new VercelDataAdapter({
edgeConfig: process.env.EDGE_CONFIG,
})
const statsig = await Statsig.initialize("secret-key", {
dataStore: vercelAdapter,
})
flowchart TD
    A[Feature Gate Check] --> B{Override Exists?}
    B -->|Yes| C[Return Override Value]
    B -->|No| D[Evaluate Rules]
    D --> E[Return Rule Result]

    C --> F[Final Result]
    E --> F

    subgraph "Override Types"
        G[Console Override] --> H[User ID List]
        I[Local Override] --> J[Programmatic]
        K[Global Override] --> L[All Users]
    end

    style A fill:#e1f5fe
    style F fill:#c8e6c9
    style C fill:#fff3e0
    style E fill:#f3e5f5
Figure 10: Override System Hierarchy - Overrides take precedence over normal rule evaluation
// Console-based overrides (highest precedence)
// Configured in Statsig console for specific userIDs
// Local SDK overrides (for testing)
statsig.overrideGate("my_gate", true, "user123")
statsig.overrideGate("my_gate", false) // Global override
// Layer-level overrides for experiments
statsig.overrideExperiment("my_experiment", "treatment", "user123")
// Local mode for testing
const statsig = await Statsig.initialize("secret-key", {
localMode: true, // Disables network requests
})
graph TB
    subgraph "Microservice A"
        A1[Service A] --> A2[Statsig SDK A]
        A2 --> A3[Redis Cache]
    end

    subgraph "Microservice B"
        B1[Service B] --> B2[Statsig SDK B]
        B2 --> A3
    end

    subgraph "Microservice C"
        C1[Service C] --> C2[Statsig SDK C]
        C2 --> A3
    end

    A3 --> D[Shared Configuration State]

    subgraph "Load Balancer"
        E[User Request] --> F[Route to Service]
        F --> A1
        F --> B1
        F --> C1
    end

    style A3 fill:#e1f5fe
    style D fill:#c8e6c9
    style E fill:#fff3e0
Figure 11: Microservices Integration - Shared Redis cache ensures consistent configuration across services
// Shared configuration state across services
const redisAdapter = new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
})
// All services use the same Redis instance for config sharing
const statsig = await Statsig.initialize("secret-key", {
dataStore: redisAdapter,
})
graph TB
    subgraph "AWS Lambda"
        A[Lambda Function] --> B{Statsig Initialized?}
        B -->|No| C[Initialize SDK]
        B -->|Yes| D[Use Existing Instance]
        C --> E[Load from Redis]
        D --> F[Local Evaluation]
        E --> F
        F --> G[Return Result]
    end

    subgraph "Redis Cache"
        H[Config Cache] --> I[Shared State]
    end

    E --> H
    D --> H

    style A fill:#e1f5fe
    style G fill:#c8e6c9
    style H fill:#fff3e0
Figure 12: Serverless Architecture - Cold start optimization with shared Redis cache
// Cold start optimization for serverless environments
let statsigInstance: Statsig | null = null
export async function handler(event: APIGatewayEvent) {
// Initialize SDK only once per container
if (!statsigInstance) {
statsigInstance = await Statsig.initialize("secret-key", {
dataStore: new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
}),
})
}
const user = { userID: event.requestContext.authorizer.userId }
const result = statsigInstance.checkGate(user, "feature_flag")
return {
statusCode: 200,
body: JSON.stringify({ feature: result }),
}
}
sequenceDiagram
    participant User as User
    participant Next as Next.js
    participant Statsig as Statsig Server
    participant Client as Client SDK
    participant React as React App

    User->>Next: GET /page
    Next->>Next: getServerSideProps()
    Next->>Statsig: getBootstrapValues(user)
    Statsig->>Statsig: Local evaluation
    Statsig-->>Next: Bootstrap values
    Next->>User: HTML + bootstrap values

    User->>Client: initializeSync(bootstrap)
    Client->>React: Feature flags ready
    React->>React: Conditional rendering

    Note over React: No UI flicker
    Note over Client: Instant initialization
Figure 13: Next.js Bootstrap Implementation - Server-side pre-computation eliminates client-side network requests
lib/statsig.ts
import { Statsig } from "@statsig/statsig-node-core"
let statsigInstance: Statsig | null = null
export async function getStatsig() {
if (!statsigInstance) {
statsigInstance = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!)
}
return statsigInstance
}
export async function getBootstrapValues(user: StatsigUser) {
const statsig = await getStatsig()
return statsig.getClientInitializeResponse(user)
}
pages/index.tsx
import { GetServerSideProps } from 'next';
import { StatsigClient } from '@statsig/js-client';
import { getBootstrapValues } from '../lib/statsig';
export const getServerSideProps: GetServerSideProps = async (context) => {
const user = {
userID: context.req.headers['x-user-id'] as string || 'anonymous',
custom: { source: 'web' }
};
const bootstrapValues = await getBootstrapValues(user);
return {
props: {
bootstrapValues,
user
}
};
};
export default function Home({ bootstrapValues, user }) {
const [statsig, setStatsig] = useState<StatsigClient | null>(null);
useEffect(() => {
const client = new StatsigClient(process.env.NEXT_PUBLIC_STATSIG_CLIENT_KEY!);
client.initializeSync({ initializeValues: bootstrapValues });
setStatsig(client);
}, [bootstrapValues]);
const isFeatureEnabled = statsig?.checkGate('new_feature') || false;
return (
<div>
{isFeatureEnabled && <NewFeatureComponent />}
<ExistingComponent />
</div>
);
}
services/feature-service.ts
import { Statsig } from "@statsig/statsig-node-core"
export class FeatureService {
private statsig: Statsig
constructor() {
this.initialize()
}
private async initialize() {
this.statsig = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!)
}
async evaluateFeatures(user: StatsigUser) {
const features = {
newUI: this.statsig.checkGate(user, "new_ui"),
pricing: this.statsig.getConfig(user, "pricing_tier"),
experiment: this.statsig.getExperiment(user, "recommendation_algorithm"),
}
return features
}
async getBootstrapValues(user: StatsigUser) {
return this.statsig.getClientInitializeResponse(user)
}
}
routes/features.ts
import { FeatureService } from "../services/feature-service"
const featureService = new FeatureService()
router.get("/features/:userId", async (req, res) => {
const user = {
userID: req.params.userId,
email: req.headers["x-user-email"] as string,
custom: { plan: req.headers["x-user-plan"] as string },
}
const features = await featureService.evaluateFeatures(user)
res.json(features)
})
router.get("/bootstrap/:userId", async (req, res) => {
const user = { userID: req.params.userId }
const bootstrapValues = await featureService.getBootstrapValues(user)
res.json(bootstrapValues)
})

Statsig’s internal architecture demonstrates a sophisticated understanding of modern distributed systems challenges. Its unified platform approach, deterministic evaluation algorithms, and flexible SDK architecture make it well-suited for high-scale, data-driven product development.

The key architectural decisions—separating client and server evaluation models, implementing robust caching strategies, and providing comprehensive override systems—reflect a mature approach to building experimentation platforms that can scale from startup to enterprise.

For engineering teams implementing Statsig, the choice between bootstrap initialization and asynchronous patterns, the decision to use data adapters for resilience, and the configuration of override systems should be driven by specific performance, security, and operational requirements.

The platform’s commitment to transparency in its assignment algorithms and the availability of warehouse-native deployment options further positions it as a solution that can grow with an organization’s data maturity and compliance requirements.

Statsig SDKs are designed to handle various network failure scenarios gracefully:

flowchart TD
    A[SDK Request] --> B{Network Available?}
    B -->|Yes| C[Fresh Data]
    B -->|No| D{Has Cache?}
    D -->|Yes| E[Use Cached Values]
    D -->|No| F[Use Defaults]

    C --> G[Success Response]
    E --> G
    F --> G

    subgraph "Fallback Hierarchy"
        H[Fresh Data] --> I[Cached Values]
        I --> J[Default Values]
        J --> K[Graceful Degradation]
    end

    style A fill:#e1f5fe
    style G fill:#c8e6c9
    style E fill:#fff3e0
    style F fill:#f3e5f5
Figure 14: Error Handling and Resilience - Multi-layered fallback mechanisms ensure system reliability
// Client SDK error handling with enhanced fallbacks
const client = new StatsigClient("client-key")
try {
await client.initializeAsync(user)
} catch (error) {
// SDK automatically falls back to cached values or defaults
console.warn("Statsig initialization failed, using cached values:", error)
// Custom fallback logic
if (error.code === "NETWORK_ERROR") {
// Use cached values
client.initializeSync(user)
} else if (error.code === "AUTH_ERROR") {
// Use defaults
console.error("Authentication failed, using default values")
}
}
// Server SDK error handling with data store fallback
const statsig = await Statsig.initialize("secret-key", {
dataStore: new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
}),
rulesetsSyncIntervalMs: 10000,
// SDK will retry failed downloads with exponential backoff
retryAttempts: 3,
retryDelayMs: 1000,
})

Client SDK Fallbacks:

  1. Cached Values: Uses previously cached evaluations from localStorage
  2. Default Values: Falls back to code-defined defaults
  3. Graceful Degradation: Continues operation with stale data

Server SDK Fallbacks:

  1. Data Store: Loads configurations from Redis/other data stores
  2. In-Memory Cache: Uses last successfully downloaded config
  3. Health Checks: Monitors SDK health and reports issues
graph TB
    subgraph "Application"
        A[Statsig SDK] --> B[Health Check]
        B --> C[Performance Metrics]
        C --> D[Error Tracking]
    end

    subgraph "Monitoring System"
        E[Metrics Collector] --> F[Alerting]
        E --> G[Dashboard]
        E --> H[Logs]
    end

    B --> E
    C --> E
    D --> E

    subgraph "Key Metrics"
        I[Evaluation Latency]
        J[Cache Hit Rate]
        K[Sync Success Rate]
        L[Error Rates]
    end

    C --> I
    C --> J
    C --> K
    D --> L

    style A fill:#e1f5fe
    style E fill:#c8e6c9
    style I fill:#fff3e0
    style L fill:#f3e5f5
Figure 15: Monitoring and Observability - Comprehensive metrics collection and alerting system
// Server SDK monitoring with enhanced health checks
const statsig = await Statsig.initialize("secret-key", {
environment: { tier: "production" },
// Enable detailed logging
logLevel: "info",
})
// Monitor SDK health with custom alerting
setInterval(() => {
const health = statsig.getHealth()
if (health.status !== "healthy") {
// Alert or log health issues
console.error("Statsig SDK health issue:", health)
// Send to monitoring system
metrics.increment("statsig.health.issues", {
status: health.status,
error: health.error,
})
}
}, 60000)
// Custom metrics collection
const startTime = performance.now()
const result = statsig.checkGate(user, "feature_flag")
const latency = performance.now() - startTime
// Send to your monitoring system
metrics.histogram("statsig.evaluation.latency", latency)
metrics.increment("statsig.evaluation.count")

Key Metrics to Monitor:

  • Evaluation Latency: Should be <1ms for server SDKs
  • Cache Hit Rate: Percentage of evaluations using cached configs
  • Sync Success Rate: Percentage of successful config downloads
  • Error Rates: Network failures, parsing errors, evaluation errors
graph TB
    subgraph "Environment Management"
        A[Development] --> B[Dev Key]
        C[Staging] --> D[Staging Key]
        E[Production] --> F[Production Key]
    end

    subgraph "Key Rotation"
        G[Current Key] --> H[Backup Key]
        H --> I[New Key]
        I --> G
    end

    subgraph "Security Layers"
        J[HTTPS/TLS] --> K[API Key Auth]
        K --> L[Environment Isolation]
        L --> M[Data Encryption]
    end

    B --> J
    D --> J
    F --> J

    style A fill:#e1f5fe
    style F fill:#c8e6c9
    style J fill:#fff3e0
    style M fill:#f3e5f5
Figure 16: Security Considerations - Multi-layered security approach with environment isolation
// Environment-specific keys
const statsigKey = process.env.NODE_ENV === "production" ? process.env.STATSIG_SECRET_KEY : process.env.STATSIG_DEV_KEY
// Key rotation strategy
const statsig = await Statsig.initialize(statsigKey, {
// Support for multiple keys during rotation
backupKeys: [process.env.STATSIG_BACKUP_KEY],
})

User Data Handling:

  • PII Protection: Never log sensitive user data
  • Data Minimization: Only send necessary user attributes
  • Encryption: All data transmitted over HTTPS/TLS
// Sanitize user data before sending to Statsig
const sanitizedUser = {
userID: user.id,
email: user.email ? hashEmail(user.email) : undefined,
custom: {
plan: user.plan,
region: user.region,
// Exclude sensitive fields like SSN, credit card info
},
}

Server SDK Benchmarks:

  • Cold Start: ~50-100ms (first evaluation after initialization)
  • Warm Evaluation: <1ms (subsequent evaluations)
  • Memory Usage: ~10-50MB (depending on config size)
  • Throughput: 10,000+ evaluations/second per instance

Client SDK Benchmarks:

  • Bootstrap Initialization: <5ms (with pre-computed values)
  • Async Initialization: 100-500ms (network dependent)
  • Cache Lookup: <0.1ms
  • Bundle Size: ~50-100KB (gzipped)
// Horizontal scaling with shared state
const redisAdapter = new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
// Enable clustering for high availability
enableOfflineMode: true,
})
// Load balancing considerations
const statsig = await Statsig.initialize("secret-key", {
dataStore: redisAdapter,
// Ensure consistent evaluation across instances
rulesetsSyncIntervalMs: 5000,
})

Choose Bootstrap Initialization When:

  • UI flicker is unacceptable
  • Server-side rendering is available
  • Performance is critical

Choose Async Initialization When:

  • Real-time updates are required
  • Server-side rendering isn’t available
  • Some rendering delay is acceptable
// Centralized configuration management
class StatsigConfig {
private static instance: StatsigConfig
private statsig: Statsig | null = null
static async getInstance(): Promise<StatsigConfig> {
if (!StatsigConfig.instance) {
StatsigConfig.instance = new StatsigConfig()
await StatsigConfig.instance.initialize()
}
return StatsigConfig.instance
}
private async initialize() {
this.statsig = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!, {
environment: { tier: process.env.NODE_ENV },
dataStore: new RedisDataAdapter({
/* config */
}),
})
}
getStatsig(): Statsig {
if (!this.statsig) {
throw new Error("Statsig not initialized")
}
return this.statsig
}
}
// Unit testing with local mode
describe("Feature Flag Tests", () => {
let statsig: Statsig
beforeEach(async () => {
statsig = await Statsig.initialize("secret-key", {
localMode: true, // Disable network requests
})
})
test("should enable feature for specific user", () => {
statsig.overrideGate("new_feature", true, "test-user")
const user = { userID: "test-user" }
const result = statsig.checkGate(user, "new_feature")
expect(result).toBe(true)
})
})

Pre-deployment Checklist:

  • Configure appropriate data stores (Redis, etc.)
  • Set up monitoring and alerting
  • Implement proper error handling
  • Test override systems
  • Validate configuration synchronization
  • Performance testing under load

Rollout Strategy:

  1. Development: Use local mode and overrides
  2. Staging: Connect to staging Statsig project
  3. Production: Gradual rollout with monitoring
  4. Monitoring: Watch error rates and performance metrics

Statsig continues to evolve with new capabilities:

  • Real-time Streaming: WebSocket-based config updates
  • Advanced Analytics: Machine learning-powered insights
  • Multi-environment Support: Enhanced environment management
  • Custom Assignment Algorithms: Support for custom bucketing logic

From Other Platforms:

  • LaunchDarkly: Gradual migration with dual evaluation
  • Optimizely: Feature-by-feature migration
  • Custom Solutions: Incremental adoption approach
// Migration helper for dual evaluation
class MigrationHelper {
constructor(
private statsig: Statsig,
private legacySystem: LegacyFeatureFlags,
) {}
async evaluateFeature(user: StatsigUser, featureName: string) {
const statsigResult = this.statsig.checkGate(user, featureName)
const legacyResult = this.legacySystem.checkFeature(user.id, featureName)
// Log discrepancies for analysis
if (statsigResult !== legacyResult) {
console.warn(`Feature ${featureName} mismatch for user ${user.userID}`)
}
return statsigResult // Use Statsig as source of truth
}
}

Statsig’s internal architecture represents a mature, well-thought-out approach to building experimentation platforms at scale. Its unified data pipeline, deterministic evaluation algorithms, and flexible SDK architecture make it an excellent choice for organizations looking to implement robust feature flagging and A/B testing capabilities.

The platform’s commitment to performance, transparency, and developer experience is evident in every architectural decision. From the sophisticated caching strategies to the comprehensive override systems, Statsig provides the tools necessary for building reliable, high-performance applications.

For engineering teams, the key is to understand the trade-offs between different initialization strategies, choose appropriate data stores for resilience, and implement proper monitoring and error handling. With these considerations in mind, Statsig can serve as a solid foundation for data-driven product development at any scale.

The platform’s continued evolution and commitment to enterprise-grade features position it well for organizations looking to grow their experimentation capabilities alongside their business needs.

Tags

Read more

  • Previous

    Modern Video Playback Stack

    14 min read

    Learn the complete video delivery pipeline from codecs and compression to adaptive streaming protocols, DRM systems, and ultra-low latency technologies for building modern video applications.TLDRModern Video Playback is a sophisticated pipeline combining codecs, adaptive streaming protocols, DRM systems, and ultra-low latency technologies to deliver high-quality video experiences across all devices and network conditions.Core Video Stack ComponentsCodecs: H.264 (universal), H.265/HEVC (4K/HDR), AV1 (royalty-free, best compression)Audio Codecs: AAC (high-quality), Opus (low-latency, real-time)Container Formats: MPEG-TS (HLS), Fragmented MP4 (DASH), CMAF (unified)Adaptive Streaming: HLS (Apple ecosystem), MPEG-DASH (open standard)DRM Systems: Widevine (Google), FairPlay (Apple), PlayReady (Microsoft)Video Codecs ComparisonH.264 (AVC): Universal compatibility, baseline compression, licensedH.265 (HEVC): 50% better compression than H.264, 4K/HDR support, complex licensingAV1: 30% better than HEVC, royalty-free, slow encoding, growing hardware supportVP9: Google’s codec, good compression, limited hardware supportAdaptive Bitrate StreamingABR Principles: Multiple quality variants, dynamic segment selection, network-aware switchingHLS Protocol: Apple’s standard, .m3u8 manifests, MPEG-TS segments, universal compatibilityMPEG-DASH: Open standard, XML manifests, codec-agnostic, flexible representationCMAF: Unified container format for both HLS and DASH, reduces storage costsStreaming ProtocolsHLS (HTTP Live Streaming): Apple ecosystem, .m3u8 manifests, MPEG-TS/fMP4 segmentsMPEG-DASH: Open standard, XML manifests, codec-agnostic, flexibleLow-Latency HLS: 2-5 second latency, partial segments, blocking playlist reloadsWebRTC: Sub-500ms latency, UDP-based, peer-to-peer, interactive applicationsDigital Rights Management (DRM)Multi-DRM Strategy: Widevine (Chrome/Android), FairPlay (Apple), PlayReady (Windows)Encryption Process: AES-128 encryption, Content Key generation, license acquisitionCommon Encryption (CENC): Single encrypted file compatible with multiple DRM systemsLicense Workflow: Secure handshake, key exchange, content decryptionUltra-Low Latency TechnologiesLow-Latency HLS: 2-5 second latency, HTTP-based, scalable, broadcast applicationsWebRTC: <500ms latency, UDP-based, interactive, conferencing applicationsPartial Segments: Smaller chunks for faster delivery and reduced latencyPreload Hints: Server guidance for optimal content deliveryVideo Pipeline ArchitectureContent Preparation: Encoding, transcoding, segmentation, packagingStorage Strategy: Origin servers, CDN distribution, edge cachingDelivery Network: Global CDN, edge locations, intelligent routingClient Playback: Adaptive selection, buffer management, quality switchingPerformance OptimizationCompression Efficiency: Codec selection, bitrate optimization, quality ladder designNetwork Adaptation: Real-time bandwidth monitoring, quality switching, buffer managementCDN Optimization: Edge caching, intelligent routing, geographic distributionQuality of Experience: Smooth playback, minimal buffering, optimal quality selectionProduction ConsiderationsScalability: CDN distribution, origin offloading, global reachReliability: Redundancy, fault tolerance, monitoring, analyticsCost Optimization: Storage efficiency, bandwidth management, encoding strategiesCompatibility: Multi-device support, browser compatibility, DRM integrationFuture TrendsOpen Standards: Royalty-free codecs, standardized containers, interoperable protocolsUltra-Low Latency: Sub-second streaming, interactive applications, real-time communicationQuality Focus: QoE optimization, intelligent adaptation, personalized experiencesHybrid Systems: Dynamic protocol selection, adaptive architectures, intelligent routing

  • Next in series: Advanced Development Topics

    Modern Video Playback Stack

    14 min read

    Learn the complete video delivery pipeline from codecs and compression to adaptive streaming protocols, DRM systems, and ultra-low latency technologies for building modern video applications.TLDRModern Video Playback is a sophisticated pipeline combining codecs, adaptive streaming protocols, DRM systems, and ultra-low latency technologies to deliver high-quality video experiences across all devices and network conditions.Core Video Stack ComponentsCodecs: H.264 (universal), H.265/HEVC (4K/HDR), AV1 (royalty-free, best compression)Audio Codecs: AAC (high-quality), Opus (low-latency, real-time)Container Formats: MPEG-TS (HLS), Fragmented MP4 (DASH), CMAF (unified)Adaptive Streaming: HLS (Apple ecosystem), MPEG-DASH (open standard)DRM Systems: Widevine (Google), FairPlay (Apple), PlayReady (Microsoft)Video Codecs ComparisonH.264 (AVC): Universal compatibility, baseline compression, licensedH.265 (HEVC): 50% better compression than H.264, 4K/HDR support, complex licensingAV1: 30% better than HEVC, royalty-free, slow encoding, growing hardware supportVP9: Google’s codec, good compression, limited hardware supportAdaptive Bitrate StreamingABR Principles: Multiple quality variants, dynamic segment selection, network-aware switchingHLS Protocol: Apple’s standard, .m3u8 manifests, MPEG-TS segments, universal compatibilityMPEG-DASH: Open standard, XML manifests, codec-agnostic, flexible representationCMAF: Unified container format for both HLS and DASH, reduces storage costsStreaming ProtocolsHLS (HTTP Live Streaming): Apple ecosystem, .m3u8 manifests, MPEG-TS/fMP4 segmentsMPEG-DASH: Open standard, XML manifests, codec-agnostic, flexibleLow-Latency HLS: 2-5 second latency, partial segments, blocking playlist reloadsWebRTC: Sub-500ms latency, UDP-based, peer-to-peer, interactive applicationsDigital Rights Management (DRM)Multi-DRM Strategy: Widevine (Chrome/Android), FairPlay (Apple), PlayReady (Windows)Encryption Process: AES-128 encryption, Content Key generation, license acquisitionCommon Encryption (CENC): Single encrypted file compatible with multiple DRM systemsLicense Workflow: Secure handshake, key exchange, content decryptionUltra-Low Latency TechnologiesLow-Latency HLS: 2-5 second latency, HTTP-based, scalable, broadcast applicationsWebRTC: <500ms latency, UDP-based, interactive, conferencing applicationsPartial Segments: Smaller chunks for faster delivery and reduced latencyPreload Hints: Server guidance for optimal content deliveryVideo Pipeline ArchitectureContent Preparation: Encoding, transcoding, segmentation, packagingStorage Strategy: Origin servers, CDN distribution, edge cachingDelivery Network: Global CDN, edge locations, intelligent routingClient Playback: Adaptive selection, buffer management, quality switchingPerformance OptimizationCompression Efficiency: Codec selection, bitrate optimization, quality ladder designNetwork Adaptation: Real-time bandwidth monitoring, quality switching, buffer managementCDN Optimization: Edge caching, intelligent routing, geographic distributionQuality of Experience: Smooth playback, minimal buffering, optimal quality selectionProduction ConsiderationsScalability: CDN distribution, origin offloading, global reachReliability: Redundancy, fault tolerance, monitoring, analyticsCost Optimization: Storage efficiency, bandwidth management, encoding strategiesCompatibility: Multi-device support, browser compatibility, DRM integrationFuture TrendsOpen Standards: Royalty-free codecs, standardized containers, interoperable protocolsUltra-Low Latency: Sub-second streaming, interactive applications, real-time communicationQuality Focus: QoE optimization, intelligent adaptation, personalized experiencesHybrid Systems: Dynamic protocol selection, adaptive architectures, intelligent routing