21 min read
Related in: Tools

Statsig Under the Hood: A Deep Dive into Internal Architecture and Implementation

Statsig is a unified experimentation platform that combines feature flags, A/B testing, and product analytics into a single, cohesive system. This post explores the internal architecture, SDK integration patterns, and implementation strategies for both browser and server-side environments.

Unified Platform: Statsig integrates feature flags, experimentation, and analytics through a single data pipeline, eliminating data silos and ensuring statistical integrity

Dual SDK Architecture: Server SDKs download full config specs and evaluate locally (sub-1ms), while client SDKs receive pre-evaluated results during initialization

Deterministic Assignment: SHA-256 hashing with unique salts ensures consistent user bucketing across platforms and sessions

High-Performance Design: Global CDN distribution for configs, multi-stage event pipeline for durability, and hybrid data processing (Spark + BigQuery)

Flexible Deployment: Supports cloud-hosted, warehouse-native, and hybrid models for different compliance and data sovereignty requirements

Advanced Caching: Sophisticated caching strategies including bootstrap initialization, local storage, and edge integration patterns

Override System: Multi-layered override capabilities for development, testing, and debugging workflows

Statsig’s architecture is built on several fundamental principles that enable its high-performance, scalable feature flagging and experimentation platform:

Deterministic Evaluation: Every evaluation produces consistent results across different platforms and SDK implementations. Given the same user object and experiment state, Statsig always returns identical results whether evaluated on client or server SDKs.

Stateless SDK Model: SDKs don’t maintain user assignment state or remember previous evaluations. Instead, they rely on deterministic algorithms to compute assignments in real-time, eliminating the need for distributed state management.

Local Evaluation: After initialization, virtually all SDK operations execute without network requests, typically completing in under 1ms. Server SDKs maintain complete rulesets in memory, while client SDKs receive pre-computed evaluations during initialization.

Unified Data Pipeline: Feature flags, experimentation, and analytics share a single data pipeline, ensuring data consistency and eliminating silos.

High-Performance Design: Optimized for sub-millisecond evaluation latencies with global CDN distribution and sophisticated caching strategies.

Server SDK

Client SDK

User Request

SDK Type?

Local Evaluation

Pre-evaluated Cache

In-Memory Ruleset

Deterministic Hash

Result

Local Storage Cache

Network Request

Statsig Backend

Pre-computed Values

Cache Update

Feature Flag Result

Figure 1: Statsig SDK Evaluation Flow - Server SDKs perform local evaluation while client SDKs use pre-computed cache

Statsig’s most fundamental design tenet is its “unified system” approach where feature flags, experimentation, product analytics, and session replay all share a single, common data pipeline. This directly addresses the prevalent industry problem of “tool sprawl” where organizations employ disparate services for different functions.

Feature Flags

Unified Data Pipeline

Experimentation

Product Analytics

Session Replay

Assignment Service

Configuration Service

Metrics Pipeline

Analysis Service

User Assignments

Rule Definitions

Event Processing

Statistical Analysis

Consistent Results

Figure 2: Unified Platform Architecture - All components share a single data pipeline ensuring consistency

When a feature flag exposure and a subsequent conversion event are processed through the same pipeline, using the same user identity model and metric definitions, the causal link between them becomes inherently trustworthy. This architectural choice fundamentally increases the statistical integrity and reliability of experiment results.

The platform is composed of distinct, decoupled microservices:

  • Assignment Service: Determines user assignments to experiment variations and feature rollouts
  • Feature Flag/Configuration Service: Manages rule definitions and config specs
  • Metrics Pipeline: High-throughput system for event ingestion, processing, and analysis
  • Analysis Service: Statistical engine computing experiment results using methods like CUPED and sequential testing

Statsig employs two fundamentally different models for configuration synchronization and evaluation:

Secret Key

Initialize

Download Full Config Spec

Store in Memory

Local Evaluation

Sub-1ms Response

Figure 3a: Server SDK Architecture - Downloads full config and evaluates locally

Client Key

Initialize

Send User to /initialize

Backend Evaluation

Pre-computed Values

Cache Results

Fast Cache Lookup

Figure 3b: Client SDK Architecture - Receives pre-computed values and caches them
// Download & Evaluate Locally Model
import { Statsig } from "@statsig/statsig-node-core"
// Initialize with full config download
const statsig = await Statsig.initialize("secret-key", {
environment: { tier: "production" },
rulesetsSyncIntervalMs: 10000,
})
// Synchronous, in-memory evaluation
function evaluateUserFeatures(user: StatsigUser) {
const isFeatureEnabled = statsig.checkGate(user, "new_ui_feature")
const config = statsig.getConfig(user, "pricing_tier")
const experiment = statsig.getExperiment(user, "recommendation_algorithm")
return {
newUI: isFeatureEnabled,
pricing: config.value,
experiment: experiment.value,
}
}
// Sub-1ms evaluation, no network calls
const result = evaluateUserFeatures({
userID: "user123",
email: "user@example.com",
custom: { plan: "premium" },
})

Characteristics:

  • Downloads entire config spec during initialization
  • Performs evaluation logic locally, in-memory
  • Synchronous, sub-millisecond operations
  • No network calls for individual checks
// Pre-evaluated on Initialize Model
import { StatsigClient } from "@statsig/js-client"
// Initialize with user context
const client = new StatsigClient("client-key")
await client.initializeAsync({
userID: "user123",
email: "user@example.com",
custom: { plan: "premium" },
})
// Synchronous cache lookup
function getFeatureFlags() {
const isFeatureEnabled = client.checkGate("new_ui_feature")
const config = client.getConfig("pricing_tier")
const experiment = client.getExperiment("recommendation_algorithm")
return {
newUI: isFeatureEnabled,
pricing: config.value,
experiment: experiment.value,
}
}
// Fast cache lookup, no network calls
const result = getFeatureFlags()

Characteristics:

  • Sends user object to /initialize endpoint during startup
  • Receives pre-computed, tailored JSON payload
  • Subsequent checks are fast, synchronous cache lookups
  • No exposure of business logic to client

Server SDKs maintain authoritative configuration state by downloading complete rule definitions:

In-Memory StoreStatsig CDNServer SDKIn-Memory StoreStatsig CDNServer SDKalt[Has Updates][No Updates]loop[Every 10 seconds]GET /download_config_specs/{KEY}Full Config Spec (JSON)Parse & Store ConfigStart Background PollingGET /download_config_specs/{KEY}?lcut={timestamp}Delta UpdatesAtomic Swap{ has_updates: false }
Figure 4: Server-Side Configuration Synchronization - Continuous polling with delta updates
interface ConfigSpecs {
feature_gates: Record<string, FeatureGateSpec>
dynamic_configs: Record<string, DynamicConfigSpec>
layer_configs: Record<string, LayerSpec>
id_lists: Record<string, string[]>
has_updates: boolean
time: number
}

Synchronization Process:

  1. Initial download from CDN endpoint: https://api.statsigcdn.com/v1/download_config_specs/{SDK_KEY}.json
  2. Background polling every 10 seconds (configurable)
  3. Delta updates when possible using company_lcut timestamp
  4. Atomic swaps of in-memory store for consistency

Client SDKs receive pre-evaluated results rather than raw configuration rules:

Local StorageStatsig BackendClient SDKLocal StorageStatsig BackendClient SDKalt[Cache Hit][Cache Miss]Check for cached valuesReturn cached evaluationsPOST /initialize { user }Evaluate all rules for userPre-computed values (JSON)Store evaluationsFast cache lookup for subsequent checks
Figure 5: Client-Side Evaluation Caching - Pre-computed values with local storage fallback
{
"feature_gates": {
"gate_name": {
"name": "gate_name",
"value": true,
"rule_id": "rule_123",
"secondary_exposures": [...]
}
},
"dynamic_configs": {
"config_name": {
"name": "config_name",
"value": {"param1": "value1"},
"rule_id": "rule_456",
"group": "treatment"
}
}
}

Statsig’s bucket assignment algorithm ensures consistent, deterministic user allocation:

User ID

Salt Generation

Input Concatenation

SHA-256 Hashing

Extract First 8 Bytes

Convert to Integer

Modulo Operation

Bucket Assignment

Rule Salt

Salt + UserID

Mod 10,000 for Experiments

Mod 1,000 for Layers

Figure 6: Deterministic Assignment Algorithm - SHA-256 hashing with salt ensures consistent user bucketing
// Enhanced algorithm implementation
import { createHash } from "crypto"
interface AssignmentResult {
bucket: number
assigned: boolean
group?: string
}
function assignUser(userId: string, salt: string, allocation: number = 10000): AssignmentResult {
// Input concatenation
const input = salt + userId
// SHA-256 hashing
const hash = createHash("sha256").update(input).digest("hex")
// Extract first 8 bytes and convert to integer
const first8Bytes = hash.substring(0, 8)
const hashInt = parseInt(first8Bytes, 16)
// Modulo operation for bucket assignment
const bucket = hashInt % allocation
// Determine if user is assigned based on allocation percentage
const assigned = bucket < allocation * 0.1 // 10% allocation example
return {
bucket,
assigned,
group: assigned ? "treatment" : "control",
}
}
// Usage example
const result = assignUser("user123", "experiment_salt_abc123", 10000)
console.log(`User assigned to bucket ${result.bucket}, group: ${result.group}`)

Process:

  1. Salt Creation: Each rule generates a unique, stable salt
  2. Input Concatenation: Salt + user identifier (userID, stableID, or customID)
  3. Hashing: SHA-256 hashing for cryptographic security and uniform distribution
  4. Bucket Assignment: First 8 bytes converted to integer, then modulo 10,000 (experiments) or 1,000 (layers)
  • Cross-platform consistency: Identical assignments across client/server SDKs
  • Temporal consistency: Maintains assignments across rule modifications
  • User attribute independence: Assignment depends only on user identifier and salt

The browser SDK implements four distinct initialization strategies:

Async Awaited

Bootstrap

Synchronous

On-Device

Browser SDK Initialization

Strategy?

Block Rendering

Network Request

Fresh Values

Server Pre-compute

Embed in HTML

Instant Render

Use Cache

Background Update

Next Session

Download Config Spec

Local Evaluation

Real-time Checks

Figure 7: Browser SDK Initialization Strategies - Four different approaches for balancing performance and freshness
const client = new StatsigClient("client-key")
await client.initializeAsync(user) // Blocks rendering until complete

Use Case: When data freshness is critical and some rendering delay is acceptable.

// Server-side (Node.js/Next.js)
const serverStatsig = await Statsig.initialize("secret-key")
const bootstrapValues = serverStatsig.getClientInitializeResponse(user)
// Client-side
const client = new StatsigClient("client-key")
client.initializeSync({ initializeValues: bootstrapValues })

Use Case: Optimal balance between performance and freshness, eliminates UI flicker.

const client = new StatsigClient("client-key")
client.initializeSync(user) // Uses cache, fetches updates in background

Use Case: Progressive web applications where some staleness is acceptable.

The browser SDK employs sophisticated caching mechanisms:

interface CachedEvaluations {
feature_gates: Record<string, FeatureGateResult>
dynamic_configs: Record<string, DynamicConfigResult>
layer_configs: Record<string, LayerResult>
time: number
company_lcut: number
hash_used: string
evaluated_keys: EvaluatedKeys
}

Cache Invalidation: Occurs when company_lcut timestamp changes, indicating configuration updates.

Data Store (Optional)

Background Sync

Node.js Application

HTTP Request

Express/Next.js Handler

Statsig SDK

In-Memory Ruleset

Local Evaluation

Response

Background Timer

Poll CDN

Download Updates

Atomic Swap

Redis/Memory

Config Cache

Figure 8: Node.js Server SDK Architecture - In-memory evaluation with background synchronization
import { Statsig } from "@statsig/statsig-node-core"
// Initialization
const statsig = await Statsig.initialize("secret-key", {
environment: { tier: "production" },
rulesetsSyncIntervalMs: 10000, // 10 seconds
})
// Synchronous evaluation
function handleRequest(req: Request, res: Response) {
const user = {
userID: req.user.id,
email: req.user.email,
custom: { plan: req.user.plan },
}
const isFeatureEnabled = statsig.checkGate(user, "new_feature")
const config = statsig.getConfig(user, "pricing_config")
// Sub-1ms evaluation, no network calls
res.json({ feature: isFeatureEnabled, pricing: config.value })
}

Server SDKs implement continuous background synchronization:

// Configurable polling interval
const statsig = await Statsig.initialize("secret-key", {
rulesetsSyncIntervalMs: 30000, // 30 seconds for less critical updates
})
// Delta updates when possible
// Atomic swaps ensure consistency

For enhanced resilience, Statsig supports pluggable data adapters:

// Redis Data Adapter
import { RedisDataAdapter } from "@statsig/redis-data-adapter"
const redisAdapter = new RedisDataAdapter({
host: "localhost",
port: 6379,
password: "password",
})
const statsig = await Statsig.initialize("secret-key", {
dataStore: redisAdapter,
})
BrowserClient SDKStatsig Server SDKNext.js ServerUserBrowserClient SDKStatsig Server SDKNext.js ServerUserNo network request neededUI renders immediatelyGET /pagegetClientInitializeResponse(user)Local evaluationBootstrap valuesHTML + bootstrap valuesinitializeSync(bootstrap)Instant cache populationFeature flags ready
Figure 9: Bootstrap Initialization Flow - Server pre-computes values for instant client-side rendering
pages/api/features.ts
import { Statsig } from "@statsig/statsig-node-core"
const statsig = await Statsig.initialize("secret-key")
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
const user = {
userID: req.headers["x-user-id"] as string,
email: req.headers["x-user-email"] as string,
}
const bootstrapValues = statsig.getClientInitializeResponse(user)
res.json(bootstrapValues)
}
pages/_app.tsx
import { StatsigClient } from '@statsig/js-client';
function MyApp({ Component, pageProps, bootstrapValues }) {
const [statsig, setStatsig] = useState(null);
useEffect(() => {
const client = new StatsigClient('client-key');
client.initializeSync({ initializeValues: bootstrapValues });
setStatsig(client);
}, []);
return <Component {...pageProps} statsig={statsig} />;
}
// Vercel Edge Config Integration
import { VercelDataAdapter } from "@statsig/vercel-data-adapter"
const vercelAdapter = new VercelDataAdapter({
edgeConfig: process.env.EDGE_CONFIG,
})
const statsig = await Statsig.initialize("secret-key", {
dataStore: vercelAdapter,
})

Yes

No

Override Types

Console Override

User ID List

Local Override

Programmatic

Global Override

All Users

Feature Gate Check

Override Exists?

Return Override Value

Evaluate Rules

Return Rule Result

Final Result

Figure 10: Override System Hierarchy - Overrides take precedence over normal rule evaluation
// Console-based overrides (highest precedence)
// Configured in Statsig console for specific userIDs
// Local SDK overrides (for testing)
statsig.overrideGate("my_gate", true, "user123")
statsig.overrideGate("my_gate", false) // Global override
// Layer-level overrides for experiments
statsig.overrideExperiment("my_experiment", "treatment", "user123")
// Local mode for testing
const statsig = await Statsig.initialize("secret-key", {
localMode: true, // Disables network requests
})

Load Balancer

Microservice C

Microservice B

Microservice A

Service A

Statsig SDK A

Redis Cache

Service B

Statsig SDK B

Service C

Statsig SDK C

Shared Configuration State

User Request

Route to Service

Figure 11: Microservices Integration - Shared Redis cache ensures consistent configuration across services
// Shared configuration state across services
const redisAdapter = new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
})
// All services use the same Redis instance for config sharing
const statsig = await Statsig.initialize("secret-key", {
dataStore: redisAdapter,
})

Redis Cache

AWS Lambda

No

Yes

Lambda Function

Statsig Initialized?

Initialize SDK

Use Existing Instance

Load from Redis

Local Evaluation

Return Result

Config Cache

Shared State

Figure 12: Serverless Architecture - Cold start optimization with shared Redis cache
// Cold start optimization for serverless environments
let statsigInstance: Statsig | null = null
export async function handler(event: APIGatewayEvent) {
// Initialize SDK only once per container
if (!statsigInstance) {
statsigInstance = await Statsig.initialize("secret-key", {
dataStore: new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
}),
})
}
const user = { userID: event.requestContext.authorizer.userId }
const result = statsigInstance.checkGate(user, "feature_flag")
return {
statusCode: 200,
body: JSON.stringify({ feature: result }),
}
}
React AppClient SDKStatsig ServerNext.jsUserReact AppClient SDKStatsig ServerNext.jsUserNo UI flickerInstant initializationGET /pagegetServerSideProps()getBootstrapValues(user)Local evaluationBootstrap valuesHTML + bootstrap valuesinitializeSync(bootstrap)Feature flags readyConditional rendering
Figure 13: Next.js Bootstrap Implementation - Server-side pre-computation eliminates client-side network requests
lib/statsig.ts
import { Statsig } from "@statsig/statsig-node-core"
let statsigInstance: Statsig | null = null
export async function getStatsig() {
if (!statsigInstance) {
statsigInstance = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!)
}
return statsigInstance
}
export async function getBootstrapValues(user: StatsigUser) {
const statsig = await getStatsig()
return statsig.getClientInitializeResponse(user)
}
pages/index.tsx
import { GetServerSideProps } from 'next';
import { StatsigClient } from '@statsig/js-client';
import { getBootstrapValues } from '../lib/statsig';
export const getServerSideProps: GetServerSideProps = async (context) => {
const user = {
userID: context.req.headers['x-user-id'] as string || 'anonymous',
custom: { source: 'web' }
};
const bootstrapValues = await getBootstrapValues(user);
return {
props: {
bootstrapValues,
user
}
};
};
export default function Home({ bootstrapValues, user }) {
const [statsig, setStatsig] = useState<StatsigClient | null>(null);
useEffect(() => {
const client = new StatsigClient(process.env.NEXT_PUBLIC_STATSIG_CLIENT_KEY!);
client.initializeSync({ initializeValues: bootstrapValues });
setStatsig(client);
}, [bootstrapValues]);
const isFeatureEnabled = statsig?.checkGate('new_feature') || false;
return (
<div>
{isFeatureEnabled && <NewFeatureComponent />}
<ExistingComponent />
</div>
);
}
services/feature-service.ts
import { Statsig } from "@statsig/statsig-node-core"
export class FeatureService {
private statsig: Statsig
constructor() {
this.initialize()
}
private async initialize() {
this.statsig = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!)
}
async evaluateFeatures(user: StatsigUser) {
const features = {
newUI: this.statsig.checkGate(user, "new_ui"),
pricing: this.statsig.getConfig(user, "pricing_tier"),
experiment: this.statsig.getExperiment(user, "recommendation_algorithm"),
}
return features
}
async getBootstrapValues(user: StatsigUser) {
return this.statsig.getClientInitializeResponse(user)
}
}
routes/features.ts
import { FeatureService } from "../services/feature-service"
const featureService = new FeatureService()
router.get("/features/:userId", async (req, res) => {
const user = {
userID: req.params.userId,
email: req.headers["x-user-email"] as string,
custom: { plan: req.headers["x-user-plan"] as string },
}
const features = await featureService.evaluateFeatures(user)
res.json(features)
})
router.get("/bootstrap/:userId", async (req, res) => {
const user = { userID: req.params.userId }
const bootstrapValues = await featureService.getBootstrapValues(user)
res.json(bootstrapValues)
})

Statsig’s internal architecture demonstrates a sophisticated understanding of modern distributed systems challenges. Its unified platform approach, deterministic evaluation algorithms, and flexible SDK architecture make it well-suited for high-scale, data-driven product development.

The key architectural decisions—separating client and server evaluation models, implementing robust caching strategies, and providing comprehensive override systems—reflect a mature approach to building experimentation platforms that can scale from startup to enterprise.

For engineering teams implementing Statsig, the choice between bootstrap initialization and asynchronous patterns, the decision to use data adapters for resilience, and the configuration of override systems should be driven by specific performance, security, and operational requirements.

The platform’s commitment to transparency in its assignment algorithms and the availability of warehouse-native deployment options further positions it as a solution that can grow with an organization’s data maturity and compliance requirements.

Statsig SDKs are designed to handle various network failure scenarios gracefully:

Yes

No

Yes

No

Fallback Hierarchy

Fresh Data

Cached Values

Default Values

Graceful Degradation

SDK Request

Network Available?

Fresh Data

Has Cache?

Use Cached Values

Use Defaults

Success Response

Figure 14: Error Handling and Resilience - Multi-layered fallback mechanisms ensure system reliability
// Client SDK error handling with enhanced fallbacks
const client = new StatsigClient("client-key")
try {
await client.initializeAsync(user)
} catch (error) {
// SDK automatically falls back to cached values or defaults
console.warn("Statsig initialization failed, using cached values:", error)
// Custom fallback logic
if (error.code === "NETWORK_ERROR") {
// Use cached values
client.initializeSync(user)
} else if (error.code === "AUTH_ERROR") {
// Use defaults
console.error("Authentication failed, using default values")
}
}
// Server SDK error handling with data store fallback
const statsig = await Statsig.initialize("secret-key", {
dataStore: new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
}),
rulesetsSyncIntervalMs: 10000,
// SDK will retry failed downloads with exponential backoff
retryAttempts: 3,
retryDelayMs: 1000,
})

Client SDK Fallbacks:

  1. Cached Values: Uses previously cached evaluations from localStorage
  2. Default Values: Falls back to code-defined defaults
  3. Graceful Degradation: Continues operation with stale data

Server SDK Fallbacks:

  1. Data Store: Loads configurations from Redis/other data stores
  2. In-Memory Cache: Uses last successfully downloaded config
  3. Health Checks: Monitors SDK health and reports issues

Key Metrics

Monitoring System

Application

Statsig SDK

Health Check

Performance Metrics

Error Tracking

Metrics Collector

Alerting

Dashboard

Logs

Evaluation Latency

Cache Hit Rate

Sync Success Rate

Error Rates

Figure 15: Monitoring and Observability - Comprehensive metrics collection and alerting system
// Server SDK monitoring with enhanced health checks
const statsig = await Statsig.initialize("secret-key", {
environment: { tier: "production" },
// Enable detailed logging
logLevel: "info",
})
// Monitor SDK health with custom alerting
setInterval(() => {
const health = statsig.getHealth()
if (health.status !== "healthy") {
// Alert or log health issues
console.error("Statsig SDK health issue:", health)
// Send to monitoring system
metrics.increment("statsig.health.issues", {
status: health.status,
error: health.error,
})
}
}, 60000)
// Custom metrics collection
const startTime = performance.now()
const result = statsig.checkGate(user, "feature_flag")
const latency = performance.now() - startTime
// Send to your monitoring system
metrics.histogram("statsig.evaluation.latency", latency)
metrics.increment("statsig.evaluation.count")

Key Metrics to Monitor:

  • Evaluation Latency: Should be <1ms for server SDKs
  • Cache Hit Rate: Percentage of evaluations using cached configs
  • Sync Success Rate: Percentage of successful config downloads
  • Error Rates: Network failures, parsing errors, evaluation errors

Security Layers

Environment Management

Key Rotation

Current Key

Backup Key

New Key

Development

Dev Key

Staging

Staging Key

Production

Production Key

HTTPS/TLS

API Key Auth

Environment Isolation

Data Encryption

Figure 16: Security Considerations - Multi-layered security approach with environment isolation
// Environment-specific keys
const statsigKey = process.env.NODE_ENV === "production" ? process.env.STATSIG_SECRET_KEY : process.env.STATSIG_DEV_KEY
// Key rotation strategy
const statsig = await Statsig.initialize(statsigKey, {
// Support for multiple keys during rotation
backupKeys: [process.env.STATSIG_BACKUP_KEY],
})

User Data Handling:

  • PII Protection: Never log sensitive user data
  • Data Minimization: Only send necessary user attributes
  • Encryption: All data transmitted over HTTPS/TLS
// Sanitize user data before sending to Statsig
const sanitizedUser = {
userID: user.id,
email: user.email ? hashEmail(user.email) : undefined,
custom: {
plan: user.plan,
region: user.region,
// Exclude sensitive fields like SSN, credit card info
},
}

Server SDK Benchmarks:

  • Cold Start: ~50-100ms (first evaluation after initialization)
  • Warm Evaluation: <1ms (subsequent evaluations)
  • Memory Usage: ~10-50MB (depending on config size)
  • Throughput: 10,000+ evaluations/second per instance

Client SDK Benchmarks:

  • Bootstrap Initialization: <5ms (with pre-computed values)
  • Async Initialization: 100-500ms (network dependent)
  • Cache Lookup: <0.1ms
  • Bundle Size: ~50-100KB (gzipped)
// Horizontal scaling with shared state
const redisAdapter = new RedisDataAdapter({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT),
password: process.env.REDIS_PASSWORD,
// Enable clustering for high availability
enableOfflineMode: true,
})
// Load balancing considerations
const statsig = await Statsig.initialize("secret-key", {
dataStore: redisAdapter,
// Ensure consistent evaluation across instances
rulesetsSyncIntervalMs: 5000,
})

Choose Bootstrap Initialization When:

  • UI flicker is unacceptable
  • Server-side rendering is available
  • Performance is critical

Choose Async Initialization When:

  • Real-time updates are required
  • Server-side rendering isn’t available
  • Some rendering delay is acceptable
// Centralized configuration management
class StatsigConfig {
private static instance: StatsigConfig
private statsig: Statsig | null = null
static async getInstance(): Promise<StatsigConfig> {
if (!StatsigConfig.instance) {
StatsigConfig.instance = new StatsigConfig()
await StatsigConfig.instance.initialize()
}
return StatsigConfig.instance
}
private async initialize() {
this.statsig = await Statsig.initialize(process.env.STATSIG_SECRET_KEY!, {
environment: { tier: process.env.NODE_ENV },
dataStore: new RedisDataAdapter({
/* config */
}),
})
}
getStatsig(): Statsig {
if (!this.statsig) {
throw new Error("Statsig not initialized")
}
return this.statsig
}
}
// Unit testing with local mode
describe("Feature Flag Tests", () => {
let statsig: Statsig
beforeEach(async () => {
statsig = await Statsig.initialize("secret-key", {
localMode: true, // Disable network requests
})
})
test("should enable feature for specific user", () => {
statsig.overrideGate("new_feature", true, "test-user")
const user = { userID: "test-user" }
const result = statsig.checkGate(user, "new_feature")
expect(result).toBe(true)
})
})

Pre-deployment Checklist:

  • Configure appropriate data stores (Redis, etc.)
  • Set up monitoring and alerting
  • Implement proper error handling
  • Test override systems
  • Validate configuration synchronization
  • Performance testing under load

Rollout Strategy:

  1. Development: Use local mode and overrides
  2. Staging: Connect to staging Statsig project
  3. Production: Gradual rollout with monitoring
  4. Monitoring: Watch error rates and performance metrics

Statsig continues to evolve with new capabilities:

  • Real-time Streaming: WebSocket-based config updates
  • Advanced Analytics: Machine learning-powered insights
  • Multi-environment Support: Enhanced environment management
  • Custom Assignment Algorithms: Support for custom bucketing logic

From Other Platforms:

  • LaunchDarkly: Gradual migration with dual evaluation
  • Optimizely: Feature-by-feature migration
  • Custom Solutions: Incremental adoption approach
// Migration helper for dual evaluation
class MigrationHelper {
constructor(
private statsig: Statsig,
private legacySystem: LegacyFeatureFlags,
) {}
async evaluateFeature(user: StatsigUser, featureName: string) {
const statsigResult = this.statsig.checkGate(user, featureName)
const legacyResult = this.legacySystem.checkFeature(user.id, featureName)
// Log discrepancies for analysis
if (statsigResult !== legacyResult) {
console.warn(`Feature ${featureName} mismatch for user ${user.userID}`)
}
return statsigResult // Use Statsig as source of truth
}
}

Statsig’s internal architecture represents a mature, well-thought-out approach to building experimentation platforms at scale. Its unified data pipeline, deterministic evaluation algorithms, and flexible SDK architecture make it an excellent choice for organizations looking to implement robust feature flagging and A/B testing capabilities.

The platform’s commitment to performance, transparency, and developer experience is evident in every architectural decision. From the sophisticated caching strategies to the comprehensive override systems, Statsig provides the tools necessary for building reliable, high-performance applications.

For engineering teams, the key is to understand the trade-offs between different initialization strategies, choose appropriate data stores for resilience, and implement proper monitoring and error handling. With these considerations in mind, Statsig can serve as a solid foundation for data-driven product development at any scale.

The platform’s continued evolution and commitment to enterprise-grade features position it well for organizations looking to grow their experimentation capabilities alongside their business needs.

Tags

Read more